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1 Product Overview

System ldentification Toolbox Product Description

1-2

Create linear and nonlinear dynamic system models from measured input-output data

System Identification Toolbox provides MATLAB® functions, Simulink® blocks, and an app for
constructing mathematical models of dynamic systems from measured input-output data. It lets you
create and use models of dynamic systems not easily modeled from first principles or specifications.
You can use time-domain and frequency-domain input-output data to identify continuous-time and
discrete-time transfer functions, process models, and state-space models. The toolbox also provides
algorithms for embedded online parameter estimation.

The toolbox provides identification techniques such as maximum likelihood, prediction-error
minimization (PEM), and subspace system identification. To represent nonlinear system dynamics,
you can estimate Hammerstein-Weiner models and nonlinear ARX models with wavelet network, tree-
partition, and sigmoid network nonlinearities. The toolbox performs grey-box system identification for
estimating parameters of a user-defined model. You can use the identified model for system response
prediction and plant modeling in Simulink. The toolbox also supports time-series data modeling and
time-series forecasting.

Key Features

» Transfer function, process model, and state-space model identification using time-domain and
frequency-domain response data

* Autoregressive (ARX, ARMAX), Box-Jenkins, and Output-Error model estimation using maximum
likelihood, prediction-error minimization (PEM), and subspace system identification techniques

* Online model parameter estimation
* Time-series modeling (AR, ARMA) and forecasting

* Identification of nonlinear ARX models and Hammerstein-Weiner models with input-output
nonlinearities such as saturation and dead zone

* Linear and nonlinear grey-box system identification for estimation of user-defined models
* Delay estimation, detrending, filtering, resampling, and reconstruction of missing data
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System lIdentification Overview
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System identification is a methodology for building mathematical models of dynamic systems using
measurements of the input and output signals of the system.

The process of system identification requires that you:

* Measure the input and output signals from your system in time or frequency domain.
» Select a model structure.

* Apply an estimation method to estimate values for the adjustable parameters in the candidate
model structure.

» Evaluate the estimated model to see if the model is adequate for your application needs.

Dynamic Systems and Models

In a dynamic system, the values of the output signals depend on both the instantaneous values of the
input signals and also on the past behavior of the system. For example, a car seat is a dynamic system
—the seat shape (settling position) depends on both the current weight of the passenger
(instantaneous value) and how long the passenger has been riding in the car (past behavior).

A model is a mathematical relationship between the input and output variables of the system. Models
of dynamic systems are typically described by differential or difference equations, transfer functions,
state-space equations, and pole-zero-gain models.

You can represent dynamic models in both continuous-time and discrete-time form.

An often-used example of a dynamic model is the equation of motion of a spring-mass-damper system.
As the following figure shows, the mass moves in response to the force F(t) applied on the base to
which the mass is attached. The input and output of this system are the force F(t) and displacement
y(t), respectively.

it

’—.' yitl

m

N

Continuous-Time Dynamic Model Example

You can represent the same physical system as several equivalent models. For example, you can
represent the mass-spring-damper system in continuous time as a second-order differential equation:

dy , dy _
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Here, m is the mass, k is the stiffness constant of the spring, and c is the damping coefficient. The
solution to this differential equation lets you determine the displacement of the mass y(t), as a
function of external force F(t) at any time t for known values of constant m, ¢, and k.

Consider the displacement y(t) and velocity

I
[ .|
’ as state variables:

y(t)

x(t) = o)

You can express the previous equation of motion as a state-space model of the system:

% = Ax(t) + BF(t)
y(t) = Cx(t)

The matrices A, B, and C are related to the constants m, ¢, and k as follows:

0 1
A=|_k _c
m m
B= oi]
m
C=[10]

You can also obtain a transfer function model of the spring-mass-damper system by taking the
Laplace transform of the differential equation:

Y(s) _ 1
F(s)  (ms?+cs +k)

G(s) =

Here, s is the Laplace variable.
Discrete-Time Dynamic Model Example

Suppose you can observe only the input and output variables F(t) and y(t) of the mass-spring-damper
system at discrete time instants t = nT,, where T is a fixed time intervaland n =0, 1, 2, .... The
variables are said to be sampled with sample time Ti. Then, you can represent the relationship
between the sampled input-output variables as a second-order difference equation, such as

y(t) + a1yt — Ts) + apy(t — 2Ts) = bF(t — Ts)

1-5
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Often, for simplicity, T; is taken as one time unit, and the equation can be written as
yit) + ary(t — 1) + apy(t — 2) = bF(t — 1)

Here, a; and a; are the model parameters. The model parameters are related to the system constants
m, ¢, and k, and the sample time T,.

This difference equation shows the dynamic nature of the model. The displacement value at the time
instant t depends not only on the value of force F at a previous time instant, but also on the
displacement values at the previous two time instants y(t-1) and y(t-2).

You can use this equation to compute the displacement at a specific time. The displacement is
represented as a weighted sum of the past input and output values:

y(t) = bF(t — 1) —a1y(t — 1) — axy(t - 2)

This equation shows an iterative way of generating values of the output y(t) starting from initial
conditions y(0) and y(1) and measurements of input F(t). This computation is called simulation.

Alternatively, the output value at a given time t can be computed using the measured values of output
at the previous two time instants and the input value at a previous time instant. This computation is
called prediction. For more information on simulation and prediction using a model, see topics on the
“Simulation and Prediction” page.

You can also represent a discrete-time equation of motion in state-space and transfer-function forms
by performing the transformations similar to those described in “Continuous-Time Dynamic Model
Example” on page 1-4.

Use Measured Data in System Identification

System identification uses the input and output signals you measure from a system to estimate the
values of adjustable parameters in a given model structure. You can build models using time-domain
input-output signals, frequency response data, time -series signals, and time-series spectra.

To obtain a good model of your system, you must have measured data that reflects the dynamic
behavior of the system. The accuracy of your model depends on the quality of your measurement
data, which in turn depends on your experimental design.

Time-Domain Data

Time-domain data consists of the input and output variables of the system that you record at a
uniform sampling interval over a period of time.

For example, if you measure the input force F(t) and mass displacement y(t) of the spring-mass-
damper system illustrated in “Dynamic Systems and Models” on page 1-4 at a uniform sampling
frequency of 10 Hz, you obtain the following vectors of measured values:

Umeqas = [F(Ts), F(2Ts), F(3Ty), ..., F(NT5)]
Ymeas = [Y(Ts), y(2Ts), y(3Ts), ..., y(NT5)]

Here, T, = 0.1 seconds and NT; is the time of the last measurement.

If you want to build a discrete-time model from this data, the data vectors u,,.,s and y..s and the
sample time T; provide sufficient information for creating such a model.
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If you want to build a continuous-time model, you must also know the intersample behavior of the
input signals during the experiment. For example, the input can be piecewise constant (zero-order
hold) or piecewise linear (first-order hold) between samples.

Frequency-Domain Data

Frequency-domain data represents measurements of the system input and output variables that you
record or store in the frequency domain. The frequency-domain signals are Fourier transforms of the
corresponding time-domain signals.

Frequency-domain data can also represent the frequency response of the system, represented by the
set of complex response values over a given frequency range. The frequency response describes the
outputs to sinusoidal inputs. If the input is a sine wave with frequency w, then the output is also a
sine wave of the same frequency, whose amplitude is A(w) times the input signal amplitude and a
phase shift of ®(w) with respect to the input signal. The frequency response is A(w)eli®®),

In the case of the mass-spring-damper system, you can obtain the frequency response data by using a
sinusoidal input force and measuring the corresponding amplitude gain and phase shift of the
response over a range of input frequencies.

You can use frequency-domain data to build both discrete-time and continuous-time models of your
system.

Data Quality Requirements

System identification requires that your data capture the important dynamics of your system. Good
experimental design ensures that you measure the right variables with sufficient accuracy and
duration to capture the dynamics you want to model. In general, your experiment must:

» Use inputs that excite the system dynamics adequately. For example, a single step is seldom
enough excitation.

* Measure data long enough to capture the important time constants.

* Set up a data acquisition system that has a good signal-to-noise ratio.

* Measure data at appropriate sampling intervals or frequency resolution.

You can analyze the data quality before building the model using the functions and techniques
described in “Analyze Data”. For example, you can analyze the input spectra to determine if the input
signals have sufficient power over the bandwidth of the system. To get analysis and processing
recommendations for your specific data, use advice.

You can also analyze your data to determine peak frequencies, input delays, important time
constants, and indication of nonlinearities using nonparametric analysis tools in this toolbox. You can
use this information for configuring model structures for building models from data. For more
information, see:

* “Correlation Models”

* “Frequency-Response Models”

1-7
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Build Models from Data

Model Structure

A model structure is a mathematical relationship between input and output variables that contains
unknown parameters. Examples of model structures are transfer functions with adjustable poles and
zeros, state-space equations with unknown system matrices, and nonlinear parameterized functions.

The following difference equation represents a simple model structure:
y(k) + ay(k — 1) = bu(k)
Here, a and b are adjustable parameters.

The system identification process requires that you choose a model structure and apply the
estimation methods to determine the numerical values of the model parameters.

You can use one of the following approaches to choose the model structure:

* You want a model that is able to reproduce your measured data and is as simple as possible. You
can try various mathematical structures available in the toolbox. This modeling approach is called
black-box modeling.

* You want a specific structure for your model, which you might have derived from first principles,
but do not know numerical values of its parameters. You can represent the model structure as a
set of equations or as a state-space system in MATLAB and estimate the values of its parameters
from data. This approach is known as grey-box modeling.

Estimate Model Parameters

The System Identification Toolbox software estimates model parameters by minimizing the error
between the model output and the measured response. The output y,,.4¢ Of the linear model is given
by

ymodel(t) = Gu(t)
Here, G is the transfer function.

To determine G, the toolbox minimizes the difference between the model output yp.qa(t) and the
measured output Ype.s(t). The minimization criterion is a weighted norm of the error, v(t), where

V(t) = ymeas(t) - ymodel(t)‘
Vmodel(t) is one of the following:

* Simulated response (Gu(t) of the model for a given input u(t)

* Predicted response of the model for a given input u(t) and past measurements of the output
(ymeas(t'l )r ymeas(t'z)'---)

Accordingly, the error v(t) is called the simulation error or prediction error. The estimation
algorithms adjust parameters in the model structure G such that the norm of this error is as small as
possible.

Configure Parameter Estimation Algorithm

You can configure the estimation algorithm by:
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* Configuring the minimization criterion to focus the estimation in a desired frequency range, for
example, to put more emphasis at lower frequencies and deemphasize higher frequency noise
contributions. You can also configure the criterion to target the intended application needs for the
model, such as simulation or prediction.

* Specifying optimization options for iterative estimation algorithms.

The majority of estimation algorithms in this toolbox are iterative. You can configure an iterative
estimation algorithm by specifying options, such as the optimization method and the maximum
number of iterations.

For more information about configuring the estimation algorithm, see “Options to Configure the Loss
Function” and the topics for estimating specific model structures.

Black-Box Modeling
Select Black-Box Model Structure and Order

Black-box modeling is useful when your primary interest is in fitting the data regardless of a
particular mathematical structure of the model. The toolbox provides several linear and nonlinear
black-box model structures, which have traditionally been useful for representing dynamic systems.
These model structures vary in complexity depending on the flexibility you need to account for the
dynamics and noise in your system. You can choose one of these structures and compute its
parameters to fit the measured response data.

Black-box modeling is usually a trial-and-error process, where you estimate the parameters of various
structures and compare the results. Typically, you start with the simple linear model structure and
progress to more complex structures. You might also choose a model structure because you are more
familiar with this structure or because you have specific application needs.

The simplest linear black-box structures require the fewest options to configure:

* Transfer function, with a given number of poles and zeros
* Linear ARX model, which is the simplest input-output polynomial model
» State-space model, which you can estimate by specifying the number of model states

Estimation of some of these structures also uses noniterative estimation algorithms, which further
reduces complexity.

You can configure a model structure using the model order. The definition of model order varies
depending on the type of model you select. For example, if you choose a transfer function
representation, the model order is related to the number of poles and zeros. For state-space
representation, the model order corresponds to the number of states. In some cases, such as for
linear ARX and state-space model structures, you can estimate the model order from the data.

If the simple model structures do not produce good models, you can select more complex model
structures by:

* Specifying a higher model order for the same linear model structure. A higher model order
increases the model flexibility for capturing complex phenomena. However, an unnecessarily high
order can make the model less reliable.

+ Explicitly modeling the noise by including the He(t) term, as shown in the following equation.

y(t) = Gu(t) + He(t)

1-9
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Here, H models the additive disturbance by treating the disturbance as the output of a linear
system driven by a white noise source e(t).

Using a model structure that explicitly models the additive disturbance can help to improve the
accuracy of the measured component G. Furthermore, such a model structure is useful when your
main interest is using the model for predicting future response values.

* Using a different linear model structure.

See “Linear Model Structures”.
* Using a nonlinear model structure.

Nonlinear models have more flexibility in capturing complex phenomena than linear models of
similar orders. See “Nonlinear Model Structures”.

Ultimately, you choose the simplest model structure that provides the best fit to your measured data.
For more information, see “Estimating Linear Models Using Quick Start” on page 3-14.

Regardless of the structure you choose for estimation, you can simplify the model for your application
needs. For example, you can separate out the measured dynamics (G) from the noise dynamics (H) to

obtain a simpler model that represents just the relationship between y and u. You can also linearize a

nonlinear model about an operating point.

Use Nonlinear Model Structures

A linear model is often sufficient to accurately describe the system dynamics and, in most cases, a
best practice is to first try to fit linear models. If the linear model output does not adequately
reproduce the measured output, you might need to use a nonlinear model.

You can assess the need to use a nonlinear model structure by plotting the response of the system to
an input. If you notice that the responses differ depending on the input level or input sign, try using a
nonlinear model. For example, if the output response to an input step up is faster than the response
to a step down, you might need a nonlinear model.

Before building a nonlinear model of a system that you know is nonlinear, try transforming the input
and output variables such that the relationship between the transformed variables is linear. For
example, consider a system that has current and voltage as inputs to an immersion heater, and the
temperature of the heated liquid as an output. The output depends on the inputs through the power
of the heater, which is equal to the product of current and voltage. Instead of building a nonlinear
model for this two-input and one-output system, you can create a new input variable by taking the
product of the current and voltage and building a linear model that describes the relationship
between power and temperature.

If you cannot determine variable transformations that yield a linear relationship between input and
output variables, you can use nonlinear structures such as nonlinear ARX or Hammerstein-Wiener
models. For a list of supported nonlinear model structures and when to use them, see “Nonlinear
Model Structures”.

Black-Box Estimation Example

You can use the System Identification app or commands to estimate linear and nonlinear models of
various structures. In most cases, you choose a model structure and estimate the model parameters
using a single command.

Consider the mass-spring-damper system described in “Dynamic Systems and Models” on page 1-4. If
you do not know the equation of motion of this system, you can use a black-box modeling approach to
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build a model. For example, you can estimate transfer functions or state-space models by specifying
the orders of these model structures.

A transfer function is a ratio of polynomials:

_ (b() + bis + b2$2 + )
T (L+fis+fs?+..)

For the mass-spring damper system, this transfer function is

1

O = Tt os+ k)

which is a system with no zeros and 2 poles.

In discrete-time, the transfer function of the mass-spring-damper system can be

-1\ _ bZ_l
6™ = (1+frz7t+ fr27?)

where the model orders correspond to the number of coefficients of the numerator and the
denominator (nb = 1 and nf = 2) and the input-output delay equals the lowest order exponent of z-!
in the numerator (nk = 1).

In continuous time, you can build a linear transfer function model using the tfest command.
m = tfest(data,2,0)

Here, data is your measured input-output data, represented as an iddata object, and the model
order is the set of number of poles (2) and the number of zeros (0).

Similarly, you can build a discrete-time model Output Error structure using the oe command.
m = oe(data,[1 2 11)

The model order is [nb nf nk]=[1 2 1]. Usually, you do not know the model orders in advance.
Try several model order values until you find the orders that produce an acceptable model.

Alternatively, you can choose a state-space structure to represent the mass-spring-damper system
and estimate the model parameters using the ssest or the n4sid command.

m = ssest(data,?2)
Here, the second argument 2 represents the order, or the number of states in the model.

In black-box modeling, you do not need the equation of motion for the system — only a guess of the
model orders.

For more information about building models, see “Steps for Using the System Identification App” and
“Model Estimation Commands”.

Grey-Box Modeling

In some situations, you can deduce the model structure from physical principles. For example, the
mathematical relationship between the input force and the resulting mass displacement in the spring-

1-11
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mass-damper system illustrated in “Dynamic Systems and Models” on page 1-4 is well known. In

state-space form, the model is given by

% = Ax(t) + BF(t)
y(t) = Cx()

where x(t) = [y(t);v(t)] is the state vector. The coefficients A, B, and C are functions of the model

parameters:
A=1[01;-k/m-c/m]
B =1[0; 1/m]

C=[10]

Here, you fully know the model structure but do not know the values of its parameters—m, c, and k.

In the grey-box approach, you use the data to estimate the values of the unknown parameters of your
model structure. You specify the model structure by a set of differential or difference equations in
MATLAB and provide some initial guess for the unknown parameters specified.

In general, you build grey-box models by:

1 Creating a template model structure.

2  Configuring the model parameters with initial values and constraints (if any).

3 Applying an estimation method to the model structure and computing the model parameter

values.

The following table summarizes the ways you can specify a grey-box model structure.

Grey-Box Structure Representation

Learn More

Represent the state-space model structure as a
structured idss model object and estimate the
state-space matrices A, B, and C.

You can compute the parameter values, such as
m, ¢, and k, from the state space matrices A and
B. For example, m = 1/B(2) and k = -A(2,1)m.

* “Estimate State-Space Models with Canonical
Parameterization”

* “Estimate State-Space Models with Structured
Parameterization”

Represent the state-space model structure as an
idgrey model object. You can directly estimate

the values of parameters m, ¢, and k.

“Grey-Box Model Estimation”

Evaluate Model Quality

After you estimate the model, you can evaluate the model quality by:

* “Compare Model Response to Measured Response” on page 1-13

* “Analyze Residuals” on page 1-14
* “Analyze Model Uncertainty” on page 1-14
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Ultimately, you must assess the quality of your model based on whether the model adequately
addresses the needs of your application. For information about other available model analysis
techniques, see “Model Analysis”.

If you do not get a satisfactory model, you can iteratively improve your results by trying a different
model structure, changing the estimation algorithm settings, or performing additional data
processing. If these changes do not improve your results, you might need to revisit your experimental
design and data gathering procedures.

Compare Model Response to Measured Response

Typically, you evaluate the quality of a model by comparing the model response to the measured
output for the same input signal.

Suppose you use a black-box modeling approach to create dynamic models of the spring-mass damper
system. You try various model structures and orders, such as:

modell
model2

arx(data, [2 1 1]);
nd4sid(data, 3)

You can simulate these models with a particular input and compare their responses against the
measured values of the displacement for the same input applied to the real system. The following
figure compares the simulated and measured responses for a step input.

Model Qutput ws. Measured Displacement

Z; measured
= model1; fit: 84.67% [
rnodel2; fit: 83.07%
Atk
2.51
= 2r
-
1.5}
'| o
[0
0
nz 04 e na 1 1.2 1.4
Time [ses)

The figure indicates that model2 is better than model1 because model2 better fits the data (65% vs.
83%).

The fit percentage indicates the agreement between the model response and the measured output:

100 means a perfect fit, and 0 indicates a poor fit (that is, the model output has the same fit to the
measured output as the mean of the measured output).
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1-14

For more information, see topics on the “Compare Output with Measured Data” page.

Analyze Residuals

The System Identification Toolbox software lets you perform residual analysis to assess the model
quality. Residuals represent the portion of the output data not explained by the estimated model. A
good model has residuals uncorrelated with past inputs.

For more information, see the topics on the “Residual Analysis” page.
Analyze Model Uncertainty

When you estimate the model parameters from data, you obtain their nominal values that are
accurate within a confidence region. The size of this region is determined by the values of the
parameter uncertainties computed during estimation. The magnitude of the uncertainties provide a
measure of the reliability of the model. Large uncertainties in parameters can result from
unnecessarily high model orders, inadequate excitation levels in the input data, and a poor signal-to-
noise ratio in measured data.

You can compute and visualize the effect of parameter uncertainties on the model response in the
time and frequency domains using pole-zero maps, Bode response plots, and step response plots. For
example, in the following Bode plot of an estimated model, the shaded regions represent the
uncertainty in amplitude and phase of the frequency response of the model, computed using the
uncertainty in the parameters. The plot shows that the uncertainty is low only in the 5 to 50 rad/s
frequency range, which indicates that the model is reliable only in this frequency range.

From Fit) to xi1)
1':'5 u b u b ) u i T |

Amplitude

-200 .

-400 -

-600 .

Phase (degrees)

-800 -

10" 10° 10° 10 10
Frequency (rad/s)

For more information, see “Compute Model Uncertainty”.
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Resources

The System Identification Toolbox documentation provides you with the necessary information to use
this product. Additional resources are available to help you learn more about specific aspects of
system identification theory and applications.

The following book describes methods for system identification and physical modeling:

* Ljung, Lennart, and Torkel Glad. Modeling of Dynamic Systems. Prentice Hall Information and
System Sciences Series. Englewood Cliffs, NJ: PTR Prentice Hall, 1994.

These books provide detailed information about system identification theory and algorithms:
* Ljung, Lennart. System Identification: Theory for the User. Second edition. Prentice Hall

Information and System Sciences Series. Upper Saddle River, NJ: PTR Prentice Hall, 1999.

* Soderstrom, Torsten, and Petre Stoica. System Identification. Prentice Hall International Series in
Systems and Control Engineering. New York: Prentice Hall, 1989.

For information about working with frequency-domain data, see the following book:

* Pintelon, Rik, and Johan Schoukens. System Identification. A Frequency Domain Approach.
Hoboken, NJ: John Wiley & Sons, 2001. https://doi.org/10.1002/0471723134.

For information on nonlinear identification, see the following references:

» Sjoberg, Jonas, Qinghua Zhang, Lennart Ljung, Albert Benveniste, Bernard Delyon, Pierre-Yves
Glorennec, Hakan Hjalmarsson, and Anatoli Juditsky. “Nonlinear Black-Box Modeling in System
Identification: A Unified Overview.” Automatica 31, no. 12 (December 1995): 1691-1724. https://
doi.org/10.1016/0005-1098(95)00120-8.

+ Juditsky, Anatoli, Hakan Hjalmarsson, Albert Benveniste, Bernard Delyon, Lennart Ljung, Jonas
SjOberg, and Qinghua Zhang. “Nonlinear Black-Box Models in System Identification:
Mathematical Foundations.” Automatica 31, no. 12 (December 1995): 1725-50. https://doi.org/
10.1016/0005-1098(95)00119-1.

* Zhang, Qinghua, and Albert Benveniste. “Wavelet Networks.” IEEE Transactions on Neural
Networks 3, no. 6 (November 1992): 889-98. https://doi.org/10.1109/72.165591.

* Zhang, Qinghua. “Using Wavelet Network in Nonparametric Estimation.” IEEE Transactions on
Neural Networks 8, no. 2 (March 1997): 227-36. https://doi.org/10.1109/72.557660.

For more information about systems and signals, see the following book:

* Oppenheim, Alan V,, and Alan S. Willsky, Signals and Systems. Upper Saddle River, NJ: PTR
Prentice Hall, 1985.

The following textbook describes numerical techniques for parameter estimation using criterion
minimization:

* Dennis, J. E., Jr,, and Robert B. Schnabel. Numerical Methods for Unconstrained Optimization and
Nonlinear Equations. Upper Saddle River, NJ: PTR Prentice Hall, 1983.
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See Also

More About
. “Get Started with System Identification Toolbox”
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Related Products

The following table summarizes MathWorks® products that extend and complement the System
Identification Toolbox software. For current information about these and other MathWorks products,

point your Web browser to:

www.mathworks.com

Product

Description

“Control System Toolbox”

Provides extensive tools to analyze plant models
created in the System Identification Toolbox
software and to tune control systems based on
these plant models. You can use the identified
models directly for advanced linear analysis and
control design tasks — no conversion of the
format required.

“Model Predictive Control Toolbox”

Uses the linear plant models created in the
System Identification Toolbox software for
predicting plant behavior that is optimized by the
model-predictive controller.

“Deep Learning Toolbox”

Provides flexible neural-network structures for
estimating nonlinear models using the System
Identification Toolbox software.

“Optimization Toolbox”

When this toolbox is installed, you have the
option of using the 1sgnonlin optimization
algorithm for linear and nonlinear identification.

“Robust Control Toolbox”

Provides tools to design multiple-input and
multiple-output (MIMO) control systems based on
plant models created in the System Identification
Toolbox software. Helps you assess robustness
based on confidence bounds for the identified
plant model.

1

“Signal Processing Toolbox”

Provides additional options for:

* Filtering
(The System Identification Toolbox software
provides only the fifth-order Butterworth
filter.)

* Spectral analysis

After using the advanced data processing
capabilities of the Signal Processing Toolbox™
software, you can import the data into the System
Identification Toolbox software for modeling.

“Simulink”

Provides System Identification blocks for
simulating the models you identified using the
System Identification Toolbox software. Also
provides blocks for model estimation.
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* “When to Use the App vs. the Command Line” on page 2-2
+ “System Identification Workflow” on page 2-3
* “Commands for Model Estimation” on page 2-5
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When to Use the App vs. the Command Line

2-2

After installing the System Identification Toolbox product, you can start the System Identification app
or work at the command line.

You can work either in the app or at the command line to preprocess data, and estimate, validate, and
compare models.

The following operations are available only at the command line:

* Generating input and output data (see idinput).

» Estimating coefficients of linear and nonlinear ordinary differential or difference equations (grey-
box models).

» Using recursive online estimation methods. For more information, see topics about estimating
linear models recursively on the “Online Estimation” page.

* Converting between continuous-time and discrete-time models (see c2d and d2c reference
pages).
* Converting models to Control System Toolbox™ LTI objects (see ss, tf, and zpk).

Note Conversions to LTI objects require the Control System Toolbox software.

New users should start by using the app to become familiar with the product. To open the app, on the
Apps tab of MATLAB desktop, in the Apps section, click System Identification. Alternatively, type
systemIdentification in the MATLAB Command Window.

To work at the command line, type the commands directly in the MATLAB Command Window. For
more information about a command, type doc command name in the MATLAB Command Window.

See Also

More About

. “System Identification Workflow” on page 2-3
. “Commands for Model Estimation” on page 2-5
. “Working with System Identification App”
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System Identification Workflow

System identification is an iterative process, where you identify models with different structures from
data and compare model performance. Ultimately, you choose the simplest model that best describes
the dynamics of your system.

Because this toolbox lets you estimate different model structures quickly, you should try as many
different structures as possible to see which one produces the best results.

A system identification workflow might include the following tasks:

1  Process data for system identification by:

Importing data into the MATLAB workspace.

Representing data in the System Identification app or as an iddata or idfrd object in the
MATLAB workspace.

Plotting data to examine both time- and frequency-domain behavior.

To analyze the data for the presence of constant offsets and trends, delay, feedback, and
signal excitation levels, you can also use the advice command.

Preprocessing data by removing offsets and linear trends, interpolating missing values,
filtering to emphasize a specific frequency range, or resampling (interpolating or decimating)
using a different time interval.

2  Identify linear or nonlinear models:

Frequency-response models

Impulse-response models

Low-order transfer functions (process models)

Input-output polynomial models

State-space models

Transfer function models

Nonlinear black-box models

Ordinary difference or differential equations (grey-box models)

3 Validate models.

When you do not achieve a satisfactory model, try a different model structure and order or try
another identification algorithm. In some cases, you can improve results by including a noise
model.

You might need to preprocess your data before doing further estimation. For example, if there is
too much high-frequency noise in your data, you might need to filter or decimate (resample) the
data before modeling.

4 Postprocess models:

Transform between continuous- and discrete-time domains
Transform between model representations

Extract numerical model data

Subreference, concatenate and merge models

2-3
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* Linearize nonlinear models
5 Use identified models for:

* “Simulation and Prediction”
* Control design for the estimated plant using other MathWorks products.

You can import an estimated linear model into Control System Toolbox, Model Predictive
Control Toolbox™, Robust Control Toolbox™, or Simulink software.

* As dynamic blocks in Simulink

For online applications, you can perform online estimation.
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Commands for Model Estimation

The following tables summarize System Identification Toolbox commands for offline and online
estimation. For detailed information about using each command, see the corresponding reference

page.

You can compile all the estimation commands using MATLAB Compiler™ software. Using MATLAB
Coder™ software, you can only generate C and C++ code for online estimation commands, except for

rpem, rplr, and segment.

Commands for Offline Estimation

functions expressed in time-constant
form)

Model Type Estimation Commands
Transfer function models tfest
Process models (low-order transfer procest

Linear input-output polynomial models

armax (ARMAX and ARIMAX models)
arx (ARX and ARIX models)

bj (BJ only)

iv4 (ARX only)

ivx (ARX only)

oe (OE only)

polyest (for all models)

State-space models n4sid
ssest
ssregest

Frequency-response models etfe
spa
spafdr

Correlation models cra
impulseest

Linear time-series models ar
arx (for multiple outputs)
ivar

Linear grey-box models greyest

Nonlinear ARX models nlarx

Hammerstein-Wiener models nlhw

Nonlinear grey-box models nlgreyest

Linear and nonlinear models pem
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Commands for Online Estimation

Model Type Estimation Commands

Linear input-output polynomial models|recursiveARX
recursiveARMAX
recursiveQE
recursiveBlJ

Linear time-series models recursiveAR
recursiveARMA

Model that is linear in parameters recursivelS

Linear polynomial models rpem
rplr

segment (AR, ARMA, ARX, and ARMAX models only)

See Also

More About

“What Is Online Estimation?”

2-6

“System Identification Workflow” on page 2-3
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* “Identify Linear Models Using System Identification App” on page 3-2
* “Identify Linear Models Using the Command Line” on page 3-37

* “Identify Low-Order Transfer Functions (Process Models) Using System Identification App”
on page 3-75

+ “Estimating Models Using Frequency-Domain Data” on page 3-98
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Identify Linear Models Using System Identification App

3-2

Introduction

Objectives

Estimate and validate linear models from single-input/single-output (SISO) data to find the one that
best describes the system dynamics.

After completing this tutorial, you will be able to accomplish the following tasks using the System
Identification app:

* Import data arrays from the MATLAB workspace into the app.

* Plot the data.

* Process data by removing offsets from the input and output signals.

» Estimate, validate, and compare linear models.

* Export models to the MATLAB workspace.

Note The tutorial uses time-domain data to demonstrate how you can estimate linear models. The
same workflow applies to fitting frequency-domain data.

This tutorial is based on the example in section 17.3 of System Identification: Theory for the User,
Second Edition, by Lennart Ljung, Prentice Hall PTR, 1999.

Data Description

This tutorial uses the data file dryer2.mat, which contains single-input/single-output (SISO) time-
domain data from Feedback Process Trainer PT326. The input and output signals each contain 1000
data samples.

This system heats the air at the inlet using a mesh of resistor wire, similar to a hair dryer. The input is
the power supplied to the resistor wires, and the output is the air temperature at the outlet.

Preparing Data for System Identification
Loading Data into the MATLAB Workspace

Load the data in dryer2.mat by typing the following command in the MATLAB Command Window:

load dryer2

This command loads the data into the MATLAB workspace as two column vectors, u2 and y2,
respectively. The variable u2 is the input data and y2 is the output data.

Opening the System Identification App

To open the System Identification app, type the following command in the MATLAB Command
Window:

systemIdentification
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The default session name, Untitled, appears in the title bar.
u System Identification - Untitled EI@
File Options Window Help
Import data - Import models -
‘ Operations ‘
<— Preprocess V:
=
Working Data
Estimate —= x|
Data Views To To Model Views
Time plot Workspace || LTI Viewer Model output Transient resp Nonlingar ARX
[ata spectra _ Model resids Frequency resp Hamm-VWiener
Frequency function Zeros and poles
Noise spectrum
W Validation Data ’
Status line iz here.

Importing Data Arrays into the System Identification App

You

can import the single-input/single-output (SISO) data from a sample data file dryer2.mat into

the app from the MATLAB workspace.

You

must have already loaded the sample data into MATLAB, as described in “Loading Data into the

MATLAB Workspace” on page 3-2, and opened the System Identification app, as described in

qu

ening the System Identification App” on page 3-2.

To import data arrays into the System Identification app:

1

Select Import data > Time domain data. This action opens the Import Data dialog box.

|mpnrt data -
Import data

Time domain data... k‘
Freq. domain data...
Data object...
Example...

In the Import Data dialog box, specify the following options:

* Input — Enter u2 as the name of the input variable.
* Output — Enter y2 as the name of the output variable.

* Data name — Change the default name to data. This name labels the data in the System
Identification app after the import operation is completed.

* Starting time — Enter 0 as the starting time. This value designates the starting value of the
time axis on time plots.
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* Sample Time — Enter 0.08 as the time between successive samples in seconds. This value
is the actual sample time in the experiment.

The Import Data dialog box now resembles the following figure.

P =

4 Import Data EI@

Data Format for Signals

Time-Domain Signals v

Workspace Variable

Input: u2
Output: va

Data Information

Drata name: data
Starting time: 0
Sample time: 0.08

I Import I [ Reset I

l Close ] [ Help ]

3 Inthe Data Information area, click More to expand the dialog box and specify the following
options:

Input Properties

* InterSample — Accept the default zoh (zero-order hold) to indicate that the input signal was
piecewise-constant between samples during data acquisition. This setting specifies the
behavior of the input signals between samples when you transform the resulting models
between discrete-time and continuous-time representations.

* Period — Accept the default inf to specify a nonperiodic input.

Note For a periodic input, enter the whole number of periods of the input signal in your
experiment.

Channel Names

* Input — Enter power.

Tip Naming channels helps you to identify data in plots. For multivariable input and output
signals, you can specify the names of individual Input and Output channels, separated by
commas.
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4

* Output — Enter temperature.

Physical Units of Variables

* Input — Enter W for power units.

Tip When you have multiple inputs and outputs, enter a comma-separated list of Input and
Output units corresponding to each channel.

*  Output — Enter "~oC for temperature units.

Notes — Enter comments about the experiment or the data. For example, you might enter the

experiment name, date, and a description of experimental conditions. When you estimate models
from this data, these models inherit your notes.

The expanded Import Data dialog box now resembles the following figure.

e

4 Im port Data

o] &S]

Data Format for Signals

Time-Domain Signals -

Input Properties

Intersample:

Period:

Workspace Variable

Input: uZ
Output: vz

Channel Hames

Input: power

Output: temperature

Data Information

Data name: data
Starting time: 0
Sample time: 0.08

| less

Physical Units of Variables

| Import | | Reset |

| Close | | Help |

Input: W
Output: ngC
Hotes

Click Import to add the data to the System Identification app. The app displays an icon to

represent the data.
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3-6

Import data -
‘l Operations
?W <— Preprocess -
data

f
A

=+ data
Working Data
Estimate — -

5 Click Close to close the Import Data dialog box.
Plotting and Processing Data

In this portion of the tutorial, you evaluate the data and process it for system identification. You learn
how to:

* Plot the data.

* Remove offsets from the data by subtracting the mean values of the input and the output.

* Split the data into two parts to use one part model estimation and the other part for model
validation.

The reason you subtract the mean values from each signal is because, typically, you build linear
models that describe the responses for deviations from a physical equilibrium. With steady-state data,
it is reasonable to assume that the mean levels of the signals correspond to such an equilibrium.
Thus, you can seek models around zero without modeling the absolute equilibrium levels in physical
units.

You must have already imported data into the System Identification app, as described in “Importing
Data Arrays into the System Identification App” on page 3-3.

To plot and process the data:

1 Select the Time plot check box to open the Time Plot. If the plot window is empty, click the data
icon in the System Identification app.
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e

E Time Plot: power-=temperature E@

File Options Style  Channel Experiment Help

Input and output signals

temperature
th & ~

T

1

e
T

Lk

0 10 20 30 40 50 &0 70 B0
Time

The top axes show the output data (temperature), and the bottom axes show the input data
(power). Both the input and the output data have nonzero mean values.

Subtract the mean input value from the input data and the mean output value from the output
data. In the System Identification app, select <--Preprocess > Remove means.

Import data >
Operations
1‘ £
,\/\ +=— Preprocess x|
data
<— Preprocess
Select channels. ..
Select experiments...
Merge experiments...
Select range...
Remove means k
Remove trends
Fitter...
. Resample...
Labels Transform data...
Time plot Quick start Model output
|:| Data spectra _ Model resid
|:| Frequency function \/\
data
Tzsh Validation Data

o plot)
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This action adds a new data set to the System Identification app with the default name datad
(the suffix d means detrend), and updates the Time Plot window to display both the original and
the detrended data. The detrended data has a zero mean value.

4| Time Plot: power->temperature — O x

File Options 5Style  Channel Experiment Help

Input and output signals
BF : , ! | | _
24l
Bal
E
3 | Mo ME A e W |"’” oy
0 I| ulfllklmlnl J‘“di f||“|ll'll|lI I.Ill,ll|'||| i‘l Ml'l‘:l H'. J |'|.| f | I.IL’I |1| J,I | | f 'JI |fl.

LRI i
f L AECEALEL AR QR

0 10 20 30 40 50 &0 70 80
Time

3  Specify the detrended data to be used for estimating models. Drag the data set datad to the
Working Data rectangle.

Alternatively, right-click the datad icon to open the Data/model Info dialog box.
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4| Data/model Info: datad

Data name: datad

Color; [0,0.5,0

Time domain data set with 1000 samples.
Sample time: 0.08 seconds
Hame: datad

Unit (if specified)

~
ol

Jutputs
terperature

m

Diary and Notes

data
detrend (data, 0)

% Import
datad =

[ Use as Validation Data

Apply

Expot | [ Close

[ Present | |

J

[ Hew |

Select the Use as Working Data check-box. Click Apply and then Close. This action adds
datad to the Working Data rectangle.

Split the data into two parts and specify the first part for model estimation, and the second part

for model validation.

a Select <--Preprocess > Select range to open the Select Range window.

Import data -

‘t ' Operations
,\/\. ',V\. «— Preprocess
data datad
=— Preprocess
Select channels...
Select experiments...
Merge experiments...
Select range... k
Remove means
Remove trends
Fitter...
i Resample...
LERUETS Transformdata...
Time plat Quick start

|:| Data spectra

ency function

b In the Select Range window, create a data set containing the first 500 samples. In the

Samples field, specify 1 500.
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Tip You can also select data samples using the mouse by clicking and dragging a
rectangular region on the plot. If you select samples on the input-channel axes, the
corresponding region is also selected on the output-channel axes.

¢ In the Data name field, type the name data est.

u Select Range: power->temperature EI@

File Options Style Channel Help

Input and output signals

2
@
5 Time span:
™
z 0 0 39.92
£
o Samples:
-2 1500
Data name:
2
data_esﬂ
[=]
=
2 Close
0 20 40 60 80

Time

Wark time span using mouse (draw rectangle) or keyboard.

d  Click Insert to add this new data set to the System Identification app to be used for model
estimation.

e Repeat this process to create a second data set containing a subset of the data to use for
validation. In the Select Range window, specify the last 500 samples in the Samples field.
Type the name data_val in the Data name field. Click Insert to add this new data set to
the System Identification app.
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u Select Range: power->temperature EI@
File Options Style Channel Help
Input and output signals

2
@ .
5 Time span:
™
z 0 40 79.92
E
o Samples:

-2 501 1000

Data name:
2
data_wal

@
g o
[=]
=

2 Close

0 20 40 60 80
Time
Wark time span using mouse (draw rectangle) or keyboard.

f  Click Clese to close the Select Range window.

In the System Identification app, drag and drop data_est to the Working Data rectangle, and
drag and drop data val to the Validation Data rectangle.

To get information about a data set, right-click its icon. For example, right-click data est to
open the Data/model Info dialog box.
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| Data/model Info: data_est EI@
Data name: data est
Calar: [4,0,01
Time domain data set with 500 samples. P

Sample time: 0.08 seconds
Mame: data_est

m

Jutputs Unit (if specified)
temperature ~oC

Inputs Unit (if specified)
power W

Diary and Motes

% Import data
datad = detrend(data,0)
data_est = datad([1:500])

[ Use as Working Data
[[] Use as validation Data Apply

e | [men ) (o ] [ e ]

You can also change certain values in the Data/model Info dialog box, including:

* Changing the name of the data set in the Data name field.

* Changing the color of the data icon in the Color field. You specify colors using RGB values
(relative amounts of red, green, and blue). Each value is between 0 and 1. For example,

[1,0,0] indicates that only red is present, and no green and blue are mixed into the overall
color.

» Viewing or editing the commands executed on this data set in the Diary and Notes area. This
area contains the command-line equivalent to the processing you performed using the System
Identification app. For example, as shown in the Data/model Info: estimate window, the
data est data set is a result of importing the data, detrending the mean values, and
selecting the first 500 samples of the data.

% Import data

datad = detrend(data,0)
data_est = datad([1:500])

For more information about these and other toolbox commands, see the corresponding
reference pages.

The Data/model Info dialog box also displays the total number of samples, the sample time, and the
output and input channel names and units. This information is not editable.
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Tip As an alternative shortcut, you can select Preprocess > Quick start from the System
Identification app to perform all of the data processing steps in this tutorial.

Learn More
For information about supported data processing operations, such as resampling and filtering the

data, see “Preprocess Data”.

Saving the Session

After you process the data, as described in “Plotting and Processing Data” on page 3-6, you can
delete any data sets in the window that you do not need for estimation and validation, and save your
session. You can open this session later and use it as a starting point for model estimation and
validation without repeating these preparatory steps.

You must have already processed the data into the System Identification app, as described in
“Plotting and Processing Data” on page 3-6.

To delete specific data sets from a session and save the session:
1 In the System Identification app:

a Drag and drop the data data set into Trash.
b  Drag and drop the datad data set into Trash.

Alternatively, you can press the Delete key on your keyboard to move the data sets to Trash.

Note Moving items to the Trash does not delete them. To permanently delete items, select
Options > Empty trash.

The following figure shows the System Identification app after moving the items to Trash.

Import data - Import models -
l Operations 4
<— Preprocess -
A v
data_est data_wal
|_ddla_gsl | —
data_est
Working Data
Estimate —= -
Data Views To To Model Views
V| Time plot Workspace || LT Viewer Model output Transient resp Nonlinear ARX
Data spectra Model resids Frequency resp Hamm-Wiener
Frequency function [[]] W Zeros and poles
data_val Noise spectrum
== Validation Data o

The object datad iz now in the trash.

2 Drag and drop the data est and data val data sets to fill the empty rectangles, as shown in
the following figure.
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3-14

Import data - Import models -
* Operations *
,\J\ <— Preprocess -
data_est data_val 1
]
= data_est
Working Data
Estimate —= hd
Data Views Model Views
To To
V| Time plot Workspace || LTI Viewer Model output Transient resp Monlinear ARX

Data spectra Model resids Frequency resp Hamm-Wiener

Freguency function [[]] W Zeros and poles
data_val

Noise spectrum
jz==1 Validation Data

3 Select File > Save session as to open the Save Session dialog box, and browse to the folder
where you want to save the session file.

4 In the File name field, type the name of the session dryer2 processed data, and click Save.
The resulting file has a . sid extension.

Tip You can open a saved session when starting the System Identification app by typing the following
command at the MATLAB prompt:

systemIdentification('dryer2 processed data')

For more information about managing sessions, see “Starting and Managing Sessions”.

Estimating Linear Models Using Quick Start
How to Estimate Linear Models Using Quick Start

You can use the Quick Start feature in the System Identification app to estimate linear models. Quick
Start might produce the final linear models you decide to use, or provide you with information
required to configure the estimation of accurate parametric models, such as time constants, input
delays, and resonant frequencies.

You must have already processed the data for estimation, as described in “Plotting and Processing
Data” on page 3-6.

In the System Identification app , select Estimate > Quick start.

This action generates plots of step response, frequency-response, and the output of state-space and
polynomial models. For more information about these plots, see “Validating the Quick Start Models”
on page 3-16.
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Import data > Import models ~)
Operations
!l P 4
/\’/\ <— Preprocess hd
data_est data_val 1 .
VAN
=
data_est
Working Data
Estimate —= &l
Toens Estimate —= o
ata Views Model Views
Transfer Function Models...
[¥] Time plot State Space Models... Model output Transient resp Monlinear ARX
Process Models...
[7] Data spectra Polynomial Models... Model resids Freguency resp Hamm-Wiener
. Nonlinear Models...
|:| Freguency function Zeros and poles
Spectral Models... N
Correlation Models. .. fj'm_l—“'al Noise spectrum
Refine Existing Models... (T R
Quick Start

Types of Quick Start Linear Models

Quick Start estimates the following four types of models and adds the following to the System
Identification app with default names:

imp — Step response over a period of time using the impulseest algorithm.

spad — Frequency response over a range of frequencies using the spa algorithm. The frequency
response is the Fourier transform of the impulse response of a linear system.

By default, the model is evaluated at 128 frequency values, ranging from 0 to the Nyquist
frequency.

arxqs — Fourth-order autoregressive (ARX) model using the arx algorithm.
This model is parametric and has the following structure:

y(t) + ay(t — 1) + ... + apgy(t — ng) =
bu(t —ng) + ... + bppu(t = ng —np + 1) + e(t)

y(t) represents the output at time £, u(t) represents the input at time ¢, n, is the number of poles,
n, is the number of b parameters (equal to the number of zeros plus 1), ny is the number of
samples before the input affects output of the system (called the delay or dead time of the model),
and e(t) is the white-noise disturbance. System Identification Toolbox software estimates the
parameters aj...a, and bj...b, using the input and output data from the estimation data set.

In arxqs, n,=n,=4, and n, is estimated from the step response model imp.

n4s3 — State-space model calculated using n4sid. The algorithm automatically selects the model
order (in this case, 3).

This model is parametric and has the following structure:

—— = Ax(t) + Bu(t) + Ke(t)
y(£) = Cx(t) + Du(t) + e(t)
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y(t) represents the output at time ¢, u(t) represents the input at time t, x is the state vector, and
e(t) is the white-noise disturbance. The System Identification Toolbox product estimates the state-
space matrices A, B, C, D, and K.

Note The Quick Start option does not create a transfer function model or a process model which can
also be good starting model types.

Validating the Quick Start Models

Quick Start generates the following plots during model estimation to help you validate the quality of
the models:

* Step-response plot

* Frequency-response plot

* Model-output plot

You must have already estimated models using Quick Start to generate these plots, as described in
“How to Estimate Linear Models Using Quick Start” on page 3-14.

Step-Response Plot

The following step-response plot shows agreement among the different model structures and the
measured data, which means that all of these structures have similar dynamics.

Tip If you closed the plot window, select the Transient resp check box to reopen this window. If the
plot is empty, click the model icons in the System Identification app window to display the models on
the plot.

Transient Response: power->temper... EI@
File Options Style Channel  Help
Step Response
1 T T T T
0e}
0.6
0.4+
02t
ot
_UZ L L L L
-1 ] 1 2 £ 4
Time
No transient response for SPA model

Step Response for imp, arxqs, and n4s3



Identify Linear Models Using System Identification App

Tip You can use the step-response plot to estimate the dead time of linear systems. For example, the
previous step-response plot shows a time delay of about 0.25 s before the system responds to the
input. This response delay, or dead time, is approximately equal to about three samples because the

sample time is 0.08 s for this data set.

Frequency-Response Plot

The following frequency-response plot shows agreement among the different model structures and
the measured data, which means that all of these structures have similar dynamics.

Tip If you closed this plot window, select the Frequency resp check box to reopen this window. If
the plot is empty, click the model icons in the System Identification app window to display the models

on the plot.

Frequency response

i)
R
= 107t
=
=
=
10" L |
2000 T ’
= \ﬁ
ﬁ 1000
o1
i ol
= _'_‘—‘--——_._._‘__‘_L
o
-1000 > = x )
10 10 10 10

Fregquency (radfs)

Frequency Response for Models imp, spad, arxqgs, and n4s3
Model-Output Plot

The Model Output window shows agreement among the different model structures and the measured
output in the validation data.

Tip If you closed the Model Output window, select the Model output check box to reopen this
window. If the plot is empty, click the model icons in the System Identification app window to display

the models on the plot.
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u Model Qutput: ternperature EI@

File Options Style  Channel Experiment Help

Measured and simulated model output
15 . -

9t

453 89.3

'\ ' Best Fits

| [amas: 89.44
imp: 89.02

0.5

40 50 &0 70 30
Time

No model output for SPA models.

Measured Output and Model Output for Models imp, arxqs, and n4s3

The model-output plot shows the model response to the input in the validation data. The fit values for
each model are summarized in the Best Fits area of the Model Output window. The models in the
Best Fits list are ordered from best at the top to worst at the bottom. The fit between the two curves
is computed such that 100 means a perfect fit, and 0 indicates a poor fit (that is, the model output has
the same fit to the measured output as the mean of the measured output).

In this example, the output of the models matches the validation data output, which indicates that the
models seem to capture the main system dynamics and that linear modeling is sufficient.

Tip To compare predicted model output instead of simulated output, select this option from the
Options menu in the Model Output window.

Estimating Linear Models
Strategy for Estimating Accurate Models

The linear models you estimated in “Estimating Linear Models Using Quick Start” on page 3-14
showed that a linear model sufficiently represents the dynamics of the system.

In this portion of the tutorial, you get accurate parametric models by performing the following tasks:

1 Identifying initial model orders and delays from your data using a simple, polynomial model
structure (ARX).

2 Exploring more complex model structures with orders and delays close to the initial values you
found.

The resulting models are discrete-time models.
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Estimating Possible Model Orders

To identify black-box models, you must specify the model order. However, how can you tell what
model orders to specify for your black-box models? To answer this question, you can estimate simple
polynomial (ARX) models for a range of orders and delays and compare the performance of these
models. You choose the orders and delays that correspond to the best model fit as an initial guess for

more accurate modeling using various model structures such as transfer function and state-space
models.

About ARX Models
For a single-input/single-output system (SISO), the ARX model structure is:
y(t) + ary(t — 1) + ... + angy(t — ng) =

biu(t —ng) + ... + bppu(t — ng —np + 1) + e(t)

y(t) represents the output at time t, u(t) represents the input at time t, n, is the number of poles, n, is
the number of zeros plus 1, ny is the input delay—the number of samples before the input affects the
system output (called delay or dead time of the model), and e(t) is the white-noise disturbance.

You specify the model orders n,, n;, and n, to estimate ARX models. The System Identification Toolbox
product estimates the parameters aj...a, and b;...b, from the data.

How to Estimate Model Orders

1 In the System Identification app, select Estimate > Polynomial Models to open the Polynomial
Models dialog box.

Estimate — b

Estimate —=

Tranzfer Function Model=...
State Space Models...
Process Models...
Monlinear Models...
Spectral Models...
Correlation Models...

Refine Existing Models...
Quick Start

From the Structure list, select ARX: [na nb nk]. By default, this is already selected.

Edit the Orders field to try all combinations of poles, zeros, and delays, where each value is from
1to 10:

[1:10 1:10 1:10]

3-19



3 Linear Model Identification

e

u Palynomial Models E@

Structure: ARX: [na nb nk] |
Orders: [1:10 1:10 1:1IJ]|

Equation: Ay=Bu+e

Method: @) ARX N

Domain: Continuous @) Dizcrete (0.08 seconds)

|:| Add noige integration ("ARK" model)

Input delay: 0
Name:
FOCUS!| prediction v Initial state: Auto v
Regularization... Covariance: | potimate =
Display progress Stop iterations
[ Order Selection ] [ Order Editor... ]
| Estmate | | ciose | | Help |

4 Click Estimate to open the ARX Model Structure Selection window, which displays the model
performance for each combination of model parameters.

You use this plot to select the best-fit model.
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Ty

File  Options Style  Help

Model Misfit vs number of par's

_ Green: MDL ChDiDE.'I Mumber of
P ~ Blue: AIC Choice 5
B15 Red: Best Fit | Misfit0.128998
8
E na= 6
a 1 nb= 9
5
_E nk= 2
| =
| E
i Insert
%0.5 ]
5 h Close
o
LUy | e
0 7 10 15 20

Mumber of par's

Click on bars to inspect models.

* The horizontal axis is the total number of parameters — n, + n,.

* The vertical axis, called Unexplained output variance (in %), is the portion of the output
not explained by the model—the ARX model prediction error for the number of parameters
shown on the horizontal axis.

The prediction error is the sum of the squares of the differences between the validation data
output and the model one-step-ahead predicted output.

* niis the delay.

Three rectangles are highlighted on the plot in green, blue, and red. Each color indicates a type
of best-fit criterion, as follows:

* Red — Best fit minimizes the sum of the squares of the difference between the validation data
output and the model output. This rectangle indicates the overall best fit.

* Green — Best fit minimizes Rissanen MDL criterion.

* Blue — Best fit minimizes Akaike AIC criterion.

In this tutorial, the Unexplained output variance (in %) value remains approximately constant
for the combined number of parameters from 4 to 20. Such constancy indicates that model
performance does not improve at higher orders. Thus, low-order models might fit the data
equally well.

Note When you use the same data set for estimation and validation, use the MDL and AIC
criteria to select model orders. These criteria compensate for overfitting that results from using
too many parameters. For more information about these criteria, see the selstruc reference
page.
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5 Inthe ARX Model Structure Selection window, click the red bar (corresponding to 15 on the
horizontal axis), and click Insert. This selection inserts n,=6, n,=9, and n,=2 into the Polynomial
Models dialog box and performs the estimation.

This action adds the model arx692 to the System Identification app and updates the plots to
include the response of the model.

Note The default name of the parametric model contains the model type and the number of
poles, zeros, and delays. For example, arx692 is an ARX model with n,=6, n,=9, and a delay of
two samples.

6 In the ARX Model Structure Selection window, click the third bar corresponding to 4 parameters
on the horizontal axis (the lowest order that still gives a good fit), and click Insert.

+ This selection inserts n,=2, n,=2, and n,=3 (a delay of three samples) into the Polynomial
Models dialog box and performs the estimation.

* The model arx223 is added to the System Identification app and the plots are updated to
include its response and output.

7 Click Close to close the ARX Model Structure Selection window.
Click Close to close the Polynomial Models dialog box.

Identifying Transfer Function Models

By estimating ARX models for different order combinations, as described in “Estimating Possible
Model Orders” on page 3-19, you identified the number of poles, zeros, and delays that provide a
good starting point for systematically exploring different models.

The overall best fit for this system corresponds to a model with six poles, nine zeros, and a delay of
two samples. It also showed that a low-order model with n, = 2 (two poles), n, = 2 (one zero), and ny
= 3 (input-output delay) also provides a good fit. Thus, you should explore model orders close to these
values.

In this portion of the tutorial, you estimate a transfer function model.
About Transfer Function Models
The general transfer function model structure is:

Y(s) = ’;‘é’:(f)) U(s) + E(s)

Y(s), U(s) and E(s) represent the Laplace transforms of the output, input and error, respectively.
num(s) and den(s) represent the numerator and denominator polynomials that define the relationship
between the input and the output. The roots of the denominator polynomial are referred to as the
model poles. The roots of the numerator polynomial are referred to as the model zeros.

You must specify the number of poles and zeros to estimate a transfer function model. The System
Identification Toolbox product estimates the numerator and denominator polynomials, and input/
output delays from the data.

The transfer function model structure is a good choice for quick estimation because it requires that
you specify only 2 parameters to get started: np is the number of poles and nz is the number of zeros.
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How to Estimate Transfer Function Models

1

2

3

In the System Identification app, select Estimate > Transfer Function Models to open the
Transfer Functions dialog box.

Estimate —= ~4

Estimate —=
Transfer Function Models... *

State Space Models...
Process Models...
Pohynomial Models. ..
Monlinear Models...
Spectral Models. ..
Correlation Models...
Refine Existing Models...
Quick Start

In the Estimate Transfer Functions dialog box, specify the following options:

*  Number of poles — Leave the default value 2 to specify a second order function, for two
poles.

* Number of zeros — Leave the default value 1.

* Continuous-time — Leave this checked.

Click Delay to expand the input/output delay specification area.

By estimating ARX models for different order combinations, as described in “Estimating Possible

Model Orders” on page 3-19, you identified a 3 sample delay (nk = 3). This delay translates to a
continuous-time delay of (nk-1)*Ts , which is equal to 0.16 seconds.

Specify Delay as 0.16 seconds. Leave Fixed checked.

Use the default Estimation Options. By default, the app assigns the name tf1 to the model. The
dialog box should look like this.
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4\ Estimate Transfer Functions

Model Structure Estimation Options
Model name | 11
Orders and Domain

Mumber of poles |2

Number of zeros | 1

#) Continuous-time

Discrete-time (0.08 seconds)

= Delay
Output: temperature

Input Delay Fixed Min
power 0.1600 | 0

Help

Max
2.4000

Estimate

Close

Click Estimate to add a transfer function model called tf1 to the System Identification app. You
can view the output of the estimation of the transfer function model in comparison with the

estimations of other models, in the Model output window.

o

u Model Output: termperature E'@
File Optiocns Style Channel Experiment Help
Measured and simulated model output
15 r r .
. ‘1 tf | _ Best Fits
1L l‘r' Y ! il. I 5 R -
L W L anG92: 8978
05 r|- '|l I--.I| “ "I "W 453 89.51
s ] ol i /]
' ar 1 args: 89.44
AT AR I (R
al 0| I I i
| o |l
el 111 ,li k! I I.Ill'JLJ_.lllr || |ar2z3: 89,02
T I [ M| imp: 89.02
'1 I I: Wt -II«. JI‘:
A5 k) r'l y b ' i
-2 I 1 !
40 50 60 70 20
Time
Mo model output for SPA models.
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Tip If you closed the Model Output window, you can regenerate it by selecting the Model
output check box in the System Identification app. If the new model does not appear on the plot,
click the model icon in the System Identification app to make the model active.

5 Click Close to close the Transfer Functions dialog box.

Learn More
To learn more about identifying transfer function models, see “Transfer Function Models”.
Identifying State-Space Models

By estimating ARX models for different order combinations, as described in “Estimating Possible
Model Orders” on page 3-19, you identified the number of poles, zeros, and delays that provide a
good starting point for systematically exploring different models.

The overall best fit for this system corresponds to a model with six poles, nine zeros, and a delay of
two samples. It also showed that a low-order model with n,=2 (two poles), n,=2 (one zero), and n,=3
(input-output delay) also provides a good fit. Thus, you should explore model orders close to these
values.

In this portion of the tutorial, you estimate a state-space model.

About State-Space Models

The general state-space model structure (innovation form) is:

- = Ax(t) + Bu(t) + Ke(t)
y(£) = Cx(t) + Du(t) + e(t)

y(t) represents the output at time t, u(t) represents the input at time t, x(t) is the state vector at time
t, and e(t) is the white-noise disturbance.

You must specify a single integer as the model order (dimension of the state vector) to estimate a
state-space model. The System Identification Toolbox product estimates the state-space matrices A, B,
C, D, and K from the data.

The state-space model structure is a good choice for quick estimation because it requires that you
specify only the number of states (which equals the number of poles). You can optionally also specify
the delays and feedthrough behavior.

How to Estimate State-Space Models

1 In the System Identification app, select Estimate > State Space Models to open the State
Space Models dialog box.
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Eztimate —= ~4

Estimate —=
Transfer Function Models. ..

State Space Modelz...
Procesz Models...
Pohynomial Models. ..
Monlinear Models...
Spectral Models...
Correlation Models...
Refine Existing Models...
Quick Start

2 In the Specify value field of the Model Structure tab, specify the model order. Type 6 to create
a sixth-order state-space model.

This choice is based on the fact that the best-fit ARX model has six poles.

Tip Although this tutorial estimates a sixth-order state-space model, you might want to explore
whether a lower-order model adequately represents the system dynamics.

The dialog box should look like this:

: 4 Ectimate State-Space Models — O
Model Structure Estimation Cptions

Model name | 551

Orders and Domain

Model order | Specify value v | |6 |

() Continuous-time

() Discrete-time (0.08 seconds) [ ] Feedthrough (D)

Form |Free r |

Include disturbance component (K)
» Delay
/’I- ) /’I- )
— —-’/ . _.1/

3  Select the Estimation Options tab to display additional options.
Change Estimation Focus to Simulation to optimize the model to use for output simulation.

The State Space Models dialog box looks like the following figure.
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Model Structure Estimation Options

- Estimation Method

Estimation method [ Subspace (N4SID)

M4Weight | Auto v |
M4Horizon | Auto |
- General

Estimation Focus | Simulation

[ | Display progress
Estimate covariance

Initial conditions | Estimate |

[ ~v Range: 0.000 - 39.270 ra="
.—-/

Click Estimate to add a state-space model called ss1 to the System Identification app.

You can view the output of the estimation of the state-space model in comparison with the

L

estimations of other models, in the Model output window.

o

u Model Qutput: ternperature E'@
File Opticns Style Channel Experiment Help
Measured and simulated model output
15 . . _
Best Fits
1t “ r { [am692: 8o 78
n4s3: 569.51
0.5 | lamgs: 89.44
ok i
i an223 89.02
05 I limp: 89.02
ss1. 86.53
1L \‘ ]
45t _
_2 1 1 |
40 50 60 7o a0
Time
Mo model output for SPA models.
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Tip If you closed the Model Output window, you can regenerate it by selecting the Model
output check box in the System Identification app. If the new model does not appear on the plot,
click the model icon in the System Identification app to make the model active.

6 Click Close to close the State Space Models dialog box.

Learn More
To learn more about identifying state-space models, see “State-Space Models”.
Identifying ARMAX Models

By estimating ARX models for different order combinations, as described in “Estimating Possible
Model Orders” on page 3-19, you identified the number of poles, zeros, and delays that provide a
good starting point for systematically exploring different models.

The overall best fit for this system corresponds to a model with six poles, nine zeros, and a delay of
two samples. It also showed that a low-order model with n,=2 (two poles), n,=2 (one zero), and n,=3
also provides a good fit. Thus, you should explore model orders close to these values.

In this portion of the tutorial, you estimate an ARMAX input-output polynomial model.

About ARMAX Models
For a single-input/single-output system (SISO), the ARMAX polynomial model structure is:

y(t) + ary(t — 1) + ... + angy(t — ng) =
biu(t—ng) + ...+ bppult —ng —np+ 1) +
e(t)+cre(t—=1)+ ... + cpee(t —ng)

y(t) represents the output at time t, u(t) represents the input at time t, n, is the number of poles for
the dynamic model, n, is the number of zeros plus 1, n, is the number of poles for the disturbance
model, ny is the number of samples before the input affects output of the system (called the delay or
dead time of the model), and e(t) is the white-noise disturbance.

Note The ARMAX model is more flexible than the ARX model because the ARMAX structure contains
an extra polynomial to model the additive disturbance.

You must specify the model orders to estimate ARMAX models. The System Identification Toolbox
product estimates the model parameters a;...a,, by...b,, and cj...c,, from the data.

How to Estimate ARMAX Models

1 In the System Identification app , select Estimate > Polynomial Models to open the Polynomial
Models dialog box.
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Eztimate —= ~4
Estimate —=

Transfer Function Models...
State Space Models...

Process Models...
Monlinear Models...
Spectral Models. ..
Correlation Models...
Refine Existing Models...
Quick Start

2 From the Structure list, select ARMAX: [na nb nc nk] to estimate an ARMAX model.

ARX: [na nb nk] -

AR [na nk nk]
ARMAX: [na nb nc nk]
OE: [nb nf nk]

BJ: [nb nc nd nf nk]

!

3 Inthe Orders field, set the orders na, nb, nc, and nk to the following values:

[2 2 2 2]

The app assigns the name to the model amx2222, by default, visible in the Name field.

B Polynomial Models (ol ===
Structure: ARMAX: [na nb nc nk] ':
Orders: [2222]
Equation: Ay=Bu+Ce
Method: Prediction error method
Domain: Continuous @ Discrete (0.08 seconds)

|:| Add noise integration ("ARIMAX" model)

Input delay: o
Name: amx2222
Focus:| prodiction 4 Initial state: Auto -
Regularization... Covariance' | gotimate |
|:| Display progress Stop iterations.
[ tteration Options... ] [ Crder Editor... ]
[ Estmate | [ cwmse | | Help |

4 Click Estimate to add the ARMAX model to the System Identification app.
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5 Repeat steps 3 and 4 using higher Orders 3 3 2 2. These orders result in a model that fits the
data almost as well as the higher order ARX model arx692.

i =

Model Output: temperature E@
File Options Style Channel Experiment Help
Measured and simulated model output
15 . . :
. Best Fits
1+ 4 [arxG92: 89.73
' . amx3322: 89.5
050 ] Mn4s3: 89.5
ardgs: 89.44
ol I !
05 an223: 89.02
imp: 89.02
-1
-1.5¢
-2 . . .
40 50 G0 70 a0
Time
No model cutput for SPA models.

Tip If you closed the Model Output window, you can regenerate it by selecting the Model
output check box in the System Identification app. If the new model does not appear on the plot,
click the model icon in the System Identification app to make the model active.

6 Click Close to close the Polynomial Models dialog box.

Learn More

To learn more about identifying input-output polynomial models, such as ARMAX, see “Input-Output
Polynomial Models”.

Choosing the Best Model
You can compare models to choose the model with the best performance.

You must have already estimated the models, as described in “Estimating Linear Models” on page 3-
18.

Summary of Models

The following figure shows the System Identification app, which includes all the estimated models in
“Estimating Linear Models” on page 3-18.
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Import data - Import models -
l Operations. l
,W <— Preprocess - \_ k N
data_est data_val imp spad arxgs. n4s3
f k k |— v
= “
arxb92 an223 | 1 ss1
= =
data_est !\
Working Data L\\)
AMeZZI3 amx 3322
Data Views Model Views
To To
Time plot Workspace | | LTI Viewer | [7] Model output Transient resp Nonlinear ARX
Data spectra Model resids Frequency resp Hamm-Wiener
Freguency function [[]] Zeros and poles
data_val Noize spectrum

T \ealidation Data

Examining the Model Output

Examine the model output plot to see how well the model output matches the measured output in the
validation data set. A good model is the simplest model that best describes the dynamics and
successfully simulates or predicts the output for different inputs. Models are listed by name in the
Best Fits area of the Model Output plot. Note that one of the simpler models, amx3322, produced a
similar fit as the highest-order model you created, arx692.

Model Output: termnperature EI@
File Options 5Style Channel Experiment Help
Measured and simulated model output
15
. Best Fits
1 1 [amE92: 8978
. amx3322: 89.6
05F | Wn4s3: 89 51
angs: 89.44
0 i 1
05 ar223: 89.02
imp: 89.02
-1 ]
-1.56¢ E
2 . L L
40 50 60 70 a0
Time
No model output for SPA models.

Tip If you closed the Model Output window, you can regenerate it by selecting the Model output
check box in the System Identification app. If the new model does not appear on the plot, click the
model icon in the System Identification app to make the model active.
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To validate your models using a different data set, you can drag and drop this data set into the
Validation Data rectangle in the System Identification app. If you transform validation data into the
frequency domain, the Model Output plot updates to show the model comparison in the frequency
domain.

To get a closer look at how well these models fit the data, magnify a portion of the plot by clicking
and dragging a rectangle around the region of interest, as shown in the following figure.

Measzured and simulated model output

1.5

-1.5} l ﬂ’l 1

-2 . . L
40 50 60 70 &0

Time

Releasing the mouse magnifies this region and shows that the output of all models matches the
validation data well.

Measured and simulated model output

Time

Viewing Model Parameters
Viewing Model Parameter Values

You can view the numerical parameter values for each estimated model.
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You must have already estimated the models, as described in “Estimating Linear Models” on page 3-

18.

To view the parameter values of the model amx3322, right-click the model icon in the System

Identification app. The Data/model Info dialog box opens.

4| Data/model Info: amx3322

Model name: amx2322

Color. [0.1,0,0.6]

A{z) =1 - 1.502 -1 + 0.7193 -2 - 0.117% z"~-3

B{z) = 0.003%5¢ z~-2 + 0.06245 z*-3 + 0.02873 z"-4

C{z) =1 - 0.562¢ 2~-1 + 0.2355 z"-2

Hame: amx33Z2
Sample time: 0.02 seconds
<

Discrete-time RARMRAY model: A({z)y(t) = B{z)u(t) + C{z)e(t)

Diary and Motes

% Import data

datad = detrend({data, )

data_est = datad([1:500])

Opt = armax0ptions;

am®3i3ZZ = armax(data est,[3 3 Z Z], Opt)

Show in LTI Viewer

Present Export Close

Help

The noneditable area of the Data/model Info dialog box lists the parameter values correspond to the

following difference equation for your system:
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y(t) — 1.502y(t — 1) + 0.7193y(t — 2) — 0.1179y(t — 3) =
0.003956u(t — 2) + 0.06245u(t — 3) + 0.02673u(t — 4) + e(f) — 0.5626e(t — 1) + 0.2355e(t — 2)

Note The coefficient of u(t-2) is not significantly different from zero. This lack of difference explains
why delay values of both 2 and 3 give good results.

Parameter values appear in the following format:

AR) =1+qz 1 + .. +ap2 "
B(2) = biz ™ 4 ... + bppz "k +1

C@)=1+ciz7 +.. +cpez ™

The parameters appear in the ARMAX model structure, as follows:
Al@y(t) = B(q)u(t) + C(q)e(t)

which corresponds to this general difference equation:

y(t) + apy(t — 1) + ... + apgy(t — ng) =
biut —ng) + ...+ bppu(t —ng —np + 1) +
e(t) +cre(t—=1)+ ... + cpee(t —nep)
y(t) represents the output at time t, u(t) represents the input at time t, n, is the number of poles for
the dynamic model, n, is the number of zeros plus 1, n, is the number of poles for the disturbance

model, n; is the number of samples before the input affects output of the system (called the delay or
dead time of the model), and e(t) is the white-noise disturbance.

Viewing Parameter Uncertainties
You can view parameter uncertainties of estimated models.

You must have already estimated the models, as described in “Estimating Linear Models” on page 3-
18.

To view parameter uncertainties, click Present in the Data/model Info dialog box, and view the model
information at the MATLAB prompt.

amx3322 =
Discrete-time ARMAX model: A(z)y(t) = B(z)u(t) + C(z)e(t)

A(z) =1 - 1.502 (+/- 0.05982) z"~-1 + 0.7193 (+/- 0.0883) z"-2
- 0.1179 (+/- 0.03462) z"-3

B(z) = 0.003956 (+/- 0.001551) z~-2 + 0.06245 (+/- 0.002372) z"-3
+ 0.02673 (+/- 0.005651) z"-4

C(z) =1 - 0.5626 (+/- 0.07322) z"-1 + 0.2355 (+/- 0.05294) z"~-2

Name: amx3322
Sample time: 0.08 seconds

Parameterization:
Polynomial orders: na=3 nb=3 nc=2 nk=2
Number of free coefficients: 8
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Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.

Status:
Termination condition: Near (local) minimum, (norm(g) < tol).
Number of iterations: 5, Number of function evaluations: 11

Estimated using POLYEST on time domain data "data est".
Fit to estimation data: 95.3% (prediction focus)

FPE: 0.001596, MSE: 0.001546

More information in model's "Report" property.

The 1-standard deviation uncertainty for the model parameters is in parentheses next to each
parameter value.

Exporting the Model to the MATLAB Workspace

The models you create in the System Identification app are not automatically available in the
MATLAB workspace. To make a model available to other toolboxes, Simulink, and System
Identification Toolbox commands, you must export your model from the System Identification app to
the MATLAB workspace. For example, if the model is a plant that requires a controller, you can
import the model from the MATLAB workspace into the Control System Toolbox product.

You must have already estimated the models, as described in “Estimating Linear Models” on page 3-
18.

To export the amx3322 model, drag it to the To Workspace rectangle in the System Identification
app. Alternatively, click Export in the Data/model Info dialog box.

The model appears in the MATLAB Workspace browser.

Workspace ]
Mame Value Min Max
©| am3322 =1: idpoly=

u2 <1000 double> 34100 64100

y2 =1000x] double> 3.2008  6.2508

Note This model is an idpoly model object.

After the model is in the MATLAB workspace, you can perform other operations on the model. For
example, if you have the Control System Toolbox product installed, you might transform the model to
a state-space object using:

ss_model=ss (amx3322)

Exporting the Model to the Linear System Analyzer

If you have the Control System Toolbox product installed, the To Linear System Analyzer rectangle
appears in the System Identification app.

The Linear System Analyzer is a graphical user interface for viewing and manipulating the response
plots of linear models. It displays the following plots:
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» Step- and impulse-response

* Bode, Nyquist, and Nichols

* Frequency-response singular values

* Pole/zero

* Response to general input signals

* Unforced response starting from given initial states (only for state-space models)

To plot a model in the Linear System Analyzer, drag and drop the model icon to the To Linear
System Analyzer rectangle in the System Identification app. Alternatively, click Show in Linear
System Analyzer in the Data/model Info dialog box.

For more information about working with plots in the Linear System Analyzer, see “Linear System
Analyzer Overview” (Control System Toolbox).
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Identify Linear Models Using the Command Line

Introduction

Objectives

Estimate and validate linear models from multiple-input/single-output (MISO) data to find the one
that best describes the system dynamics.

After completing this tutorial, you will be able to accomplish the following tasks using the command
line:

* Create data objects to represent data.

* Plot the data.

* Process data by removing offsets from the input and output signals.

* Estimate and validate linear models from the data.

* Simulate and predict model output.

Note This tutorial uses time-domain data to demonstrate how you can estimate linear models. The
same workflow applies to fitting frequency-domain data.

Data Description

This tutorial uses the data file co2data.mat, which contains two experiments of two-input and
single-output (MISO) time-domain data from a steady-state that the operator perturbed from
equilibrium values.

In the first experiment, the operator introduced a pulse wave to both inputs. In the second
experiment, the operator introduced a pulse wave to the first input and a step signal to the second
input.

Input 1
Rate of Chemical =3
Consumption coz Cutput:

(kg/min) Production |3y Rateofcoz

Production
Input 2 Process i

CLpWEﬂI (A) ————

Preparing Data

Loading Data into the MATLAB Workspace

Load the data.

load co2data

This command loads the following five variables into the MATLAB Workspace:

* Input expland Qutput expl are the input and output data from the first experiment,
respectively.
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* Input exp2and Qutput exp2 are the input and output data from the second experiment,

respectively.

* Time is the time vector from 0 to 1000 minutes, increasing in equal increments of 0.5 min.

For both experiments, the input data consists of two columns of values. The first column of values is
the rate of chemical consumption (in kilograms per minute), and the second column of values is the
current (in amperes). The output data is a single column of the rate of carbon-dioxide production (in

milligrams per minute).

Plotting the Input/Output Data

Plot the input and output data from both experiments.

plot(Time, Input expl,Time,Output expl)
legend('Input 1',"'Input 2','Output 1)
figure

plot(Time, Input exp2,Time,OQutput exp2)
legend('Input 1',"'Input 2','Output 1')

2D D T T T T T T T T T
Irput 1
Fr———————— If p a2
150 Output 1|
100 N
E'D I | ™1 1 ! L
ok N
50T 7
—'1 DD 1 1 1 1 1 1 1 1 1
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ZDD T T T T T T T T T
Input 1

— — — ——r ——r, ——r — Input 2

Output 1
150 ]

100 _

50 — ]

—SD 1 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 YOO 800 900 1000

The first plot shows the first experiment, where the operator applies a pulse wave to each input to
perturb it from its steady-state equilibrium.

The second plot shows the second experiment, where the operator applies a pulse wave to the first
input and a step signal to the second input.

Removing Equilibrium Values from the Data

Plotting the data, as described in “Plotting the Input/Output Data” on page 3-38, shows that the
inputs and the outputs have nonzero equilibrium values. In this portion of the tutorial, you subtract
equilibrium values from the data.

The reason you subtract the mean values from each signal is because, typically, you build linear
models that describe the responses for deviations from a physical equilibrium. With steady-state data,
it is reasonable to assume that the mean levels of the signals correspond to such an equilibrium.
Thus, you can seek models around zero without modeling the absolute equilibrium levels in physical
units.

Zoom in on the plots to see that the earliest moment when the operator applies a disturbance to the
inputs occurs after 25 minutes of steady-state conditions (or after the first 50 samples). Thus, the
average value of the first 50 samples represents the equilibrium conditions.

Use the following commands to remove the equilibrium values from inputs and outputs in both
experiments:

Input _expl = Input expl-...
ones(size(Input expl,1l),1)*mean(Input expl(1:50,:));

3-39



3 Linear Model Identification

3-40

Output _expl = OQutput expl-...

mean (Output expl(1:50,:));
Input _exp2 = Input exp2-...

ones(size(Input _exp2,1),1)*mean(Input exp2(1:50,:));
Output _exp2 = Output exp2-...

mean (Output exp2(1:50,:));

Using Objects to Represent Data for System Identification

The System Identification Toolbox data objects, iddata and idfrd, encapsulate data values and data
properties into a single entity. You can use the System Identification Toolbox commands to
conveniently manipulate these data objects as single entities.

In this portion of the tutorial, you create two iddata objects, one for each of the two experiments.
You use the data from Experiment 1 for model estimation, and the data from Experiment 2 for model
validation. You work with two independent data sets because you use one data set for model
estimation and the other for model validation.

Note When two independent data sets are not available, you can split one data set into two parts,
assuming that each part contains enough information to adequately represent the system dynamics.

Creating iddata Objects

You must have already loaded the sample data into the MATLAB workspace, as described in “Loading
Data into the MATLAB Workspace” on page 3-37.

Use these commands to create two data objects, ze and zv :

Ts = 0.5; % Sample time is 0.5 min
ze = iddata(Output_expl,Input _expl,Ts);
zv = iddata(Output_exp2,Input_exp2,Ts);

ze contains data from Experiment 1 and zv contains data from Experiment 2. Ts is the sample time.
The iddata constructor requires three arguments for time-domain data and has the following syntax:
data obj = iddata(output,input,sampling interval);

To view the properties of an iddata object, use the get command. For example, type this command
to get the properties of the estimation data:

get(ze)

ans =
struct with fields:

Domain: 'Time'
Name: "'
OQutputData: [2001x1 double]
y: 'Same as OutputData
OutputName: {'yl'}
OutputUnit: {''}
InputData: [2001x2 double]
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u:

InputName:
InputUnit:
Period:
InterSample:
Ts:

Tstart:
SamplingInstants:
TimeUnit:
ExperimentName:
Notes:
UserData:

‘Same as InputData’
{2x1 cell}

{2x1 cell}

[2x1 double]
{2x1 cell}
0.5000

[]

[2001x0 double]
'seconds'’
"Expl’

{}

[]

To learn more about the properties of this data object, see the iddata reference page.

To modify data properties, you can use dot notation or the set command. For example, to assign
channel names and units that label plot axes, type the following syntax in the MATLAB Command
Window:

% Set time units to minutes

ze

.TimeUnit = 'min';

% Set names of input channels

ze

.InputName = {'ConsumptionRate', 'Current'};

% Set units for input variables
.InputUnit = {'kg/min',"'A'};
% Set name of output channel
ze.OutputName = 'Production’;

% Set unit of output channel
ze.OutputUnit = 'mg/min’;

ze

% Set validation data properties

Vv
ZV
ZV
Vv
ZV

.TimeUnit = 'min';

.InputName = {'ConsumptionRate', 'Current'};
.InputUnit = {'kg/min',"'A'};

.OutputName = 'Production’;

.OutputUnit = 'mg/min‘;

You can verify that the InputName property of ze is changed, or "index" into this property:

ze

.inputname;

Tip Property names, such as InputUnit, are not case sensitive. You can also abbreviate property
names that start with Input or Output by substituting u for Input and y for Output in the property

name. For example, OutputUnit is equivalent to yunit.

Plotting the Data in a Data Object

You can plot iddata objects using the plot command.

Plot the estimation data.

plot(ze)
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Input-Output Data
Production
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E— ConsumptionRate Current
T U 4
0.5 3
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200 400 600 800 1000 200 400 600 800 1000

Time (minutes)
The bottom axes show inputs ConsumptionRate and Current, and the top axes show the output
ProductionRate.

Plot the validation data in a new figure window.

figure
plot(zv)

Open a new MATLAB Figure window
Plot the validation data

[
“©
[

“©
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Input-Output Data
Praduction
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Zoom in on the plots to see that the experiment process amplifies the first input
( ConsumptionRate ) by a factor of 2, and amplifies the second input (Current ) by a factor of 10.

Selecting a Subset of the Data

Before you begin, create a new data set that contains only the first 1000 samples of the original
estimation and validation data sets to speed up the calculations.

Zel
Zvl

ze(1:1000);
zv(1:1000);

For more information about indexing into iddata objects, see the corresponding reference page.

Estimating Impulse Response Models

Why Estimate Step- and Frequency-Response Models?

Frequency-response and step-response are nonparametric models that can help you understand the
dynamic characteristics of your system. These models are not represented by a compact

mathematical formula with adjustable parameters. Instead, they consist of data tables.

In this portion of the tutorial, you estimate these models using the data set ze. You must have already
created ze, as described in “Creating iddata Objects” on page 3-40.

The response plots from these models show the following characteristics of the system:
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* The response from the first input to the output might be a second-order function.

* The response from the second input to the output might be a first-order or an overdamped
function.

Estimating the Frequency Response

The System Identification Toolbox product provides three functions for estimating the frequency
response:

* etfe computes the empirical transfer function using Fourier analysis.
* spa estimates the transfer function using spectral analysis for a fixed frequency resolution.
* spafdr lets you specify a variable frequency resolution for estimating the frequency response.

Use spa to estimate the frequency response.
Ge = spa(ze);

Plot the frequency response as a Bode plot.

bode(Ge)
Bode Diagram
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The amplitude peaks at the frequency of 0.54 rad/min, which suggests a possible resonant behavior
(complex poles) for the first input-to-output combination - ConsumptionRate to Production.

In both plots, the phase rolls off rapidly, which suggests a time delay for both input/output
combinations.
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Estimating the Empirical Step Response

To estimate the step response from the data, first estimate a non-parametric impulse response model
(FIR filter) from data and then plot its step response.

% model estimation
Mimp = impulseest(Zel,60);

% step response

step(Mimp)
Step Response
From: ConsumptionRate From: Current
12 T T T T
10 —
JJ
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oS
= o O
o 4
32
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Time (minutes)
The step response for the first input/output combination suggests an overshoot, which indicates the
presence of an underdamped mode (complex poles) in the physical system.

The step response from the second input to the output shows no overshoot, which indicates either a
first-order response or a higher-order response with real poles (overdamped response).

The step-response plot indicates a nonzero delay in the system, which is consistent with the rapid
phase roll-off you got in the Bode plot you created in “Estimating the Empirical Step Response” on
page 3-45.
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Estimating Delays in the Multiple-Input System
Why Estimate Delays?

To identify parametric black-box models, you must specify the input/output delay as part of the model
order.

If you do not know the input/output delays for your system from the experiment, you can use the
System Identification Toolbox software to estimate the delay.

Estimating Delays Using the ARX Model Structure

In the case of single-input systems, you can read the delay on the impulse-response plot. However, in
the case of multiple-input systems, such as the one in this tutorial, you might be unable to tell which
input caused the initial change in the output and you can use the delayest command instead.

The command estimates the time delay in a dynamic system by estimating a low-order, discrete-time
ARX model with a range of delays, and then choosing the delay that corresponding to the best fit.

The ARX model structure is one of the simplest black-box parametric structures. In discrete-time, the
ARX structure is a difference equation with the following form:

y(&) + aryt — 1) + ... + apgy(t — ng) =
biu(t —ng) + ... + bppu(t = ng —np + 1) + e(t)

y(t) represents the output at time t, u(t) represents the input at time ¢, n, is the number of poles, n, is
the number of b parameters (equal to the number of zeros plus 1), n, is the number of samples before
the input affects output of the system (called the delay or dead time of the model), and e(t) is the
white-noise disturbance.

delayest assumes that n,=n,=2 and that the noise e is white or insignificant, and estimates n.

To estimate the delay in this system, type:

delayest(ze)

ans =

5 10

This result includes two numbers because there are two inputs: the estimated delay for the first input
is 5 data samples, and the estimated delay for the second input is 10 data samples. Because the
sample time for the experiments is 0.5 min, this corresponds to a 2.5 -min delay before the first
input affects the output, and a 5.0 -min delay before the second input affects the output.

Estimating Delays Using Alternative Methods
There are two alternative methods for estimating the time delay in the system:

* Plot the time plot of the input and output data and read the time difference between the first
change in the input and the first change in the output. This method is practical only for single-
input/single-output system; in the case of multiple-input systems, you might be unable to tell
which input caused the initial change in the output.
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* Plot the impulse response of the data with a 1-standard-deviation confidence region. You can
estimate the time delay using the time when the impulse response is first outside the confidence
region.

Estimating Model Orders Using an ARX Model Structure
Why Estimate Model Order?

Model order is one or more integers that define the complexity of the model. In general, model order
is related to the number of poles, the number of zeros, and the response delay (time in terms of the
number of samples before the output responds to the input). The specific meaning of model order
depends on the model structure.

To compute parametric black-box models, you must provide the model order as an input. If you do not
know the order of your system, you can estimate it.

After completing the steps in this section, you get the following results:

* For the first input/output combination: n,=2, n,=2, and the delay n,=5.
* For the second input/output combination: n,=1, n,=1, and the delay n,=10.

Later, you explore different model structures by specifying model-order values that are slight
variations around these initial estimate.

Commands for Estimating the Model Order

In this portion of the tutorial, you use struc, arxstruc, and selstruc to estimate and compare
simple polynomial (ARX) models for a range of model orders and delays, and select the best orders
based on the quality of the model.

The following list describes the results of using each command:

* struc creates a matrix of model-order combinations for a specified range of n,, n,, and n, values.

* arxstruc takes the output from struc, systematically estimates an ARX model for each model
order, and compares the model output to the measured output. arxstruc returns the loss
function for each model, which is the normalized sum of squared prediction errors.

» selstruc takes the output from arxstruc and opens the ARX Model Structure Selection
window, which resembles the following figure, to help you choose the model order.

You use this plot to select the best-fit model.
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Click on bars to inspect models.

* The horizontal axis is the total number of parameters — n, + n,.

* The vertical axis, called Unexplained output variance (in %), is the portion of the output not
explained by the model—the ARX model prediction error for the number of parameters shown
on the horizontal axis.

The prediction error is the sum of the squares of the differences between the validation data
output and the model one-step-ahead predicted output.

* nyis the delay.

Three rectangles are highlighted on the plot in green, blue, and red. Each color indicates a type of
best-fit criterion, as follows:

* Red — Best fit minimizes the sum of the squares of the difference between the validation data
output and the model output. This rectangle indicates the overall best fit.

¢  Green — Best fit minimizes Rissanen MDL criterion.
* Blue — Best fit minimizes Akaike AIC criterion.

In this tutorial, the Unexplained output variance (in %) value remains approximately constant
for the combined number of parameters from 4 to 20. Such constancy indicates that model

performance does not improve at higher orders. Thus, low-order models might fit the data equally
well.

Note When you use the same data set for estimation and validation, use the MDL and AIC criteria
to select model orders. These criteria compensate for overfitting that results from using too many
parameters. For more information about these criteria, see the selstruc reference page.
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Model Order for the First Input-Output Combination

In this tutorial, there are two inputs to the system and one output and you estimate model orders for
each input/output combination independently. You can either estimate the delays from the two inputs
simultaneously or one input at a time.

It makes sense to try the following order combinations for the first input/output combination:

* n,=2:5

¢ Np= 1:5

. nk=5

This is because the nonparametric models you estimated in “Estimating Impulse Response Models”
on page 3-43 show that the response for the first input/output combination might have a second-order

response. Similarly, in “Estimating Delays in the Multiple-Input System” on page 3-46, the delay for
this input/output combination was estimated to be 5.

To estimate model order for the first input/output combination:
1 Use struc to create a matrix of possible model orders.

NN1 = struc(2:5,1:5,5);
2 Use selstruc to compute the loss functions for the ARX models with the orders in NN1.

selstruc(arxstruc(ze(:,:,1),zv(:,:,1),NN1))

Note ze(:,:,1) selects the first input in the data.

This command opens the interactive ARX Model Structure Selection window.

i =

ARX Model Structure %ection EI@

File Options Style  Help
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# 15 Blue: MDL Choice
% Blue: AIC Chaice 5
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= —
= REIN nb=3
5
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= Select
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o Close
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= 0 Help
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Inspect models by clicking bars or press SELECT.
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Note The Rissanen MDL and Akaike AIC criteria produces equivalent results and are both
indicated by a blue rectangle on the plot.

The red rectangle represents the best overall fit, which occurs for n,=2, n,=3, and n,=5. The
height difference between the red and blue rectangles is insignificant. Therefore, you can choose
the parameter combination that corresponds to the lowest model order and the simplest model.

3 Click the blue rectangle, and then click Select to choose that combination of orders:

nk=5
4 To continue, press any key while in the MATLAB Command Window.

Model Order for the Second Input-Output Combination

It makes sense to try the following order combinations for the second input/output combination:
* n,=1:3

¢ Np= 1: 3

¢ k= 10

This is because the nonparametric models you estimated in “Estimating Impulse Response Models”
on page 3-43 show that the response for the second input/output combination might have a first-order
response. Similarly, in “Estimating Delays in the Multiple-Input System” on page 3-46, the delay for
this input/output combination was estimated to be 10.

To estimate model order for the second input/output combination:

1 Use struc to create a matrix of possible model orders.

NN2 = struc(1:3,1:3,10);
2 Use selstruc to compute the loss functions for the ARX models with the orders in NN2.

selstruc(arxstruc(ze(:,:,2),zv(:,:,2),NN2))

This command opens the interactive ARX Model Structure Selection window.
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Estimating Transfer Functions

ARX Model Structure Selection
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Misfit=0.73872
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nk= 10

Select
Close
Help

Inspect models by clicking bars or press SELECT.

Note The Akaike AIC and the overall best fit criteria produces equivalent results. Both are
indicated by the same red rectangle on the plot.

The height difference between all of the rectangles is insignificant and all of these model orders
result in similar model performance. Therefore, you can choose the parameter combination that
corresponds to the lowest model order and the simplest model.

Click the yellow rectangle on the far left, and then click Select to choose the lowest order: n,=1,
np=1, and n;=10.

To continue, press any key while in the MATLAB Command Window.

Specifying the Structure of the Transfer Function

In this portion of the tutorial, you estimate a continuous-time transfer function. You must have
already prepared your data, as described in “Preparing Data” on page 3-37. You can use the following
results of estimated model orders to specify the orders of the model:

For the first input/output combination, use:

Two poles, corresponding to na=2 in the ARX model.

Delay of 5, corresponding to nk=5 samples (or 2.5 minutes) in the ARX model.

For the second input/output combination, use:

One pole, corresponding to na=1 in the ARX model

Delay of 10, corresponding to nk=10 samples (or 5 minutes) in the ARX model.
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You can estimate a transfer function of these orders using the tfest command. For the estimation,

you can also choose to view a progress report by setting the Display option to on in the option set
created by the tfestOptions command.

Opt = tfestOptions('Display','on');
Collect the model orders and delays into variables to pass to tfest.

np = [2 1];
ioDelay = [2.5 5];

Estimate the transfer function.

mtf = tfest(Zel,np,[],ioDelay,Opt);
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Tranzsfer Fonction Identification

Eatimaticon data: Time domain data Zel

Data has 1 ocutputs, 2 inputs and 1000 samples.
Humber of poles: [2 1], Humber of zeros: [1 0]

Initializaticn Method: "iv™

(8]
on
o

, L/O delav: [

Estimation Progress

Initializing model parameters...
Initializing using '"iv' method...
done.

Initializaticn complete.

Algorithm: Honlinear least sguares with autcmatically chosen line search method

Horm of First-ocrder Improvement (%)
Iteraticn Cost step optimality Expected Achiewved Bisections=
a 16.4744 = 1.77e+03 2.94 = =
1 12.6875 14.1 1.5%4e+03 2.94 23.1 2
= 11 nona T “ 1 (== ¥ f=4at | = oo A

Result

Termination condition: No improvement along the search direction with line =earch..
Humber of iteraticns: 14, MNumker of function ewvaluaticns: 538

Statun=s: Estimated using TFEST
Fit to estimation data: 78.92%, FPE: 14.2213

Stop | | Close |

View the model's coefficients.

mtf

mtf =
From input "ConsumptionRate" to output "Production":
-1.382 s + 0.0008305
exp(-2.5%s) * -
s™2 + 1.014 s + 5.447e-12

From input "Current" to output "Production":
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exp(-5*s) * ----------
s + 0.5858

Continuous-time identified transfer function.

Parameterization:
Number of poles: [2 1] Number of zeros: [1 0]
Number of free coefficients: 6
Use "tfdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:

Estimated using TFEST on time domain data "Zel".
Fit to estimation data: 78.92%

FPE: 14.22, MSE: 13.97

The model's display shows more than 85% fit to estimation data.

Validating the Model

In this portion of the tutorial, you create a plot that compares the actual output and the model output
using the compare command.

compare(Zvl,mtf)

Simulated Response Comparison
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2Zv1 (Production)
mitf: 44 49%; i

[
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T

[
=
T
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o
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=
2
T
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The comparison shows about 60% fit.
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Residual Analysis
Use the resid command to evaluate the characteristics of the residuals.
resid(zZvl,mtf)

Residue Correlation
Autg-g_lc-rr ACorr (ConsumptionRate) A Corr (Current)

Amplitude
e@Production

The residuals show high degree of auto-correlation. This is not unexpected since the model mt f does
not have any components to describe the nature of the noise separately. To model both the measured
input-output dynamics and the disturbance dynamics you will need to use a model structure that
contains elements to describe the noise component. You can use bj, ssest and procest commands,
which create models of polynomial, state-space and process structures respectively. These structures,
among others, contain elements to capture the noise behavior.

Estimating Process Models

Specifying the Structure of the Process Model

In this portion of the tutorial, you estimate a low-order, continuous-time transfer function (process
model). the System Identification Toolbox product supports continuous-time models with at most
three poles (which might contain underdamped poles), one zero, a delay element, and an integrator.

You must have already prepared your data, as described in “Preparing Data” on page 3-37.

You can use the following results of estimated model orders to specify the orders of the model:
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* For the first input/output combination, use:

* Two poles, corresponding to n,=2 in the ARX model.
* Delay of 5, corresponding to n,=5 samples (or 2.5 minutes) in the ARX model.
» For the second input/output combination, use:

* One pole, corresponding to n,=1 in the ARX model.
* Delay of 10, corresponding to n,=10 samples (or 5 minutes) in the ARX model.

Note Because there is no relationship between the number of zeros estimated by the discrete-time
ARX model and its continuous-time counterpart, you do not have an estimate for the number of zeros.
In this tutorial, you can specify one zero for the first input/output combination, and no zero for the
second-output combination.

Use the idproc command to create two model structures, one for each input/output combination:
midproc@ = idproc({'P2zUD','P1D'}, 'TimeUnit', 'minutes');
The cell array {'P2ZUD", 'P1D'} specifies the model structure for each input/output combination:

* 'P2ZUD' represents a transfer function with two poles ( P2 ), one zero ( Z ), underdamped
(complex-conjugate) poles (U ) and a delay (D ).

* 'P1D' represents a transfer function with one pole ( P1 ) and a delay (D ).
The example also uses the TimeUnit parameter to specify the unit of time used.
Viewing the Model Structure and Parameter Values

View the two resulting models.
midproc@
midprocO =

Process model with 2 inputs: y = G1l1(s)ul + G1l2(s)u2
From input 1 to output 1:

1+Tz*s
Gll(s) = Kp * ---cmmmmmmi e - * exp(-Td*s)
1+2*Zeta*Tw*s+(Tw*s) "2
Kp = NaN
Tw = NaN
Zeta = NaN
Td = NaN
Tz = NaN
From input 2 to output 1:
Kp
Gl2(s) = ---------- * exp(-Td*s)
1+Tpl*s
Kp = NaN
Tpl = NaN
Td = NaN
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Parameterization:
{'P2DUZ"'} {'P1D'}
Number of free coefficients: 8
Use "getpvec", "getcov" for parameters and their uncertainties.

Status:
Created by direct construction or transformation. Not estimated.

The parameter values are set to NaN because they are not yet estimated.
Specifying Initial Guesses for Time Delays

Set the time delay property of the model object to 2.5 min and 5 min for each input/output pair as
initial guesses. Also, set an upper limit on the delay because good initial guesses are available.

midproc@.Structure(l,1).Td.Value = 2.5;
midproc@.Structure(1,2).Td.Value = 5;

midprocO.Structure(1l,1).Td.Maximum = 3;
midprocO.Structure(1,2).Td.Maximum = 7;

Note When setting the delay constraints, you must specify the delays in terms of actual time units
(minutes, in this case) and not the number of samples.

Estimating Model Parameters Using procest

procest is an iterative estimator of process models, which means that it uses an iterative nonlinear
least-squares algorithm to minimize a cost function. The cost function is the weighted sum of the
squares of the errors.

Depending on its arguments, procest estimates different black-box polynomial models. You can use
procest, for example, to estimate parameters for linear continuous-time transfer-function, state-
space, or polynomial model structures. To use procest, you must provide a model structure with
unknown parameters and the estimation data as input arguments.

For this portion of the tutorial, you must have already defined the model structure, as described in
“Specifying the Structure of the Process Model” on page 3-55. Use midprocO as the model structure
and Zel as the estimation data:

midproc = procest(Zel,midproc0);
present(midproc)

midproc =
Process model with 2 inputs: y = G1l1(s)ul + G1l2(s)u2
From input "ConsumptionRate" to output "Production":
1+Tz*s
Gl1(s) = Kp * ------mmmmmmae - * exp(-Td*s)
1+2*Zeta*Tw*s+(Tw*s) "2

Kp = -1.1807 +/- 0.29986

Tw = 1.6437 +/- 714.6
Zeta = 16.036 +/- 6958.9

Td = 2.426 +/- 64.276

Tz = -109.19 +/- 63.734
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From input "Current" to output "Production":

Kp
Gl2(s) = ---------- * exp(-Td*s)
1+Tpl*s
Kp = 10.264 +/- 0.048404
Tpl = 2.049 +/- 0.054901
Td = 4.9175 +/- 0.034374
Parameterization:

{'P2DUZ"'} {'P1D'}
Number of free coefficients: 8
Use "getpvec", "getcov" for parameters and their uncertainties.

Status:
Termination condition: Maximum number of iterations reached..
Number of iterations: 20, Number of function evaluations: 279

Estimated using PROCEST on time domain data "Zel".
Fit to estimation data: 86.2%

FPE: 6.081, MSE: 5.984

More information in model's "Report" property.

Unlike discrete-time polynomial models, continuous-time models let you estimate the delays. In this
case, the estimated delay values are different from the initial guesses you specified of 2.5 and 5,
respectively. The large uncertainties in the estimated values of the parameters of G_1(s) indicate
that the dynamics from input 1 to the output are not captured well.

To learn more about estimating models, see “Process Models”.
Validating the Model

In this portion of the tutorial, you create a plot that compares the actual output and the model output.

compare(Zvl,midproc)
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Simulated Response Comparison
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The plot shows that the model output reasonably agrees with the measured output: there is an
agreement of 60% between the model and the validation data.

Use resid to perform residual analysis.

resid(Zvl,midproc)
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Residue Correlation
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The cross-correlation between the second input and residual errors is significant. The autocorrelation
plot shows values outside the confidence region and indicates that the residuals are correlated.

Change the algorithm for iterative parameter estimation to Levenberg-Marquardt.

Opt = procestOptions;
Opt.SearchMethod = 'Im';
midprocl = procest(Zel,midproc,Opt);

Tweaking the algorithm properties or specifying initial parameter guesses and rerunning the
estimation may improve the simulation results. Adding a noise model may improve prediction results
but not necessarily the simulation results.

Estimating a Process Model with Noise Model

This portion of the tutorial shows how to estimate a process model and include a noise model in the
estimation. Including a noise model typically improves model prediction results but not necessarily
the simulation results.

Use the following commands to specify a first-order ARMA noise:
Opt = procestOptions;

Opt.DisturbanceModel = 'ARMALl"';

midproc2 = procest(Zel,midprocO,0pt);

You can type 'dist' instead of 'DisturbanceModel’. Property names are not case sensitive, and
you only need to include the portion of the name that uniquely identifies the property.
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Compare the resulting model to the measured data.

compare(Zvl,midproc2)

Simulated Response Comparison
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The plot shows that the model output maintains reasonable agreement with the validation-data
output.

Perform residual analysis.

resid(Zvl,midproc2)
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Residue Correlation
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The residual plot shows that autocorrelation values are inside the confidence bounds. Thus adding a
noise model produces uncorrelated residuals. This indicates a more accurate model.

Estimating Black-Box Polynomial Models
Model Orders for Estimating Polynomial Models

In this portion of the tutorial, you estimate several different types of black-box, input-output
polynomial models.

You must have already prepared your data, as described in “Preparing Data” on page 3-37.

You can use the following previous results of estimated model orders to specify the orders of the
polynomial model:

» For the first input/output combination, use:

* Two poles, corresponding to n,=2 in the ARX model.

* One zero, corresponding to n,=2 in the ARX model.

* Delay of 5, corresponding to n,=5 samples (or 2.5 minutes) in the ARX model.
* For the second input/output combination, use:

* One pole, corresponding to n,=1 in the ARX model.
* No zeros, corresponding to n,=1 in the ARX model.
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* Delay of 10, corresponding to n,=10 samples (or 5 minutes) in the ARX model.

Estimating a Linear ARX Model
About ARX Models

For a single-input/single-output system (SISO), the ARX model structure is:

(&) + ary(t — 1) + ... + angy(t — ng) =
biu(t —ng) + ... + bppu(t — ng —np + 1) + e(t)

y(t) represents the output at time t, u(t) represents the input at time t, n, is the number of poles, n, is
the number of zeros plus 1, n, is the number of samples before the input affects output of the system
(called the delay or dead time of the model), and e(t) is the white-noise disturbance.

The ARX model structure does not distinguish between the poles for individual input/output paths:
dividing the ARX equation by A, which contains the poles, shows that A appears in the denominator
for both inputs. Therefore, you can set n, to the sum of the poles for each input/output pair, which is
equal to 3 in this case.

The System Identification Toolbox product estimates the parameters a;...a, and by...b, using the data
and the model orders you specify.

Estimating ARX Models Using arx
Use arx to compute the polynomial coefficients using the fast, noniterative method arx:
marx = arx(Zel,'na',3,'nb',[2 11, 'nk',[5 10]);

present(marx) % Displays model parameters
% with uncertainty information

marx =
Discrete-time ARX model: A(z)y(t) = B(z)u(t) + e(t)

A(z) =1 - 1.027 (+/- 0.02907) z™~-1 + 0.1678 (+/- 0.042) z~-2 + 0.01289 (
+/- 0.02583) z"-3

B1l(z) 1.86 (+/- 0.189) z~-5 - 1.608 (+/- 0.1888) z"-6

B2(z) 1.612 (+/- 0.07392) z~-10

Sample time: 0.5 minutes

Parameterization:
Polynomial orders: na=3 nb=[2 1] nk=[5 10]
Number of free coefficients: 6
Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.

Status:

Estimated using ARX on time domain data "Zel".
Fit to estimation data: 90.7% (prediction focus)
FPE: 2.768, MSE: 2.719

More information in model's "Report" property.

MATLAB estimates the polynomials A, B1 , and B2. The uncertainty for each of the model parameters
is computed to 1 standard deviation and appears in parentheses next to each parameter value.
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Alternatively, you can use the following shorthand syntax and specify model orders as a single vector:
marx = arx(Zel,[3 2 1 5 10]);

Accessing Model Data

The model you estimated, marx, is a discrete-time idpoly object. To get the properties of this model
object, you can use the get function:

get(marx)
A: [1 -1.0267 0.1678 0.0129]
B: {[0 0000 1.8599 -1.6084] [0 0O0OOO0O00OOOOO 1.6118]}
C: 1
D: 1
F: {[1] [1]}
IntegrateNoise: 0
Variable: 'z"~-1'
IODelay: [0 0]
Structure: [1x1 pmodel.polynomial]

NoiseVariance: 2.7436
InputDelay: [2x1 double]
OQutputDelay: 0O
Ts: 0.5000
TimeUnit: 'minutes'
InputName: {2x1 cell}
InputUnit: {2x1 cell}
InputGroup: [1x1 struct]
OutputName: {'Production'}
OutputUnit: {'mg/min'}
OutputGroup: [1x1 struct]

Notes: [Ox1 string]
UserData: []
Name: *''
SamplingGrid: [1x1 struct]
Report: [1x1 idresults.arx]

You can access the information stored by these properties using dot notation. For example, you can
compute the discrete poles of the model by finding the roots of the A polynomial.

marx_poles = roots(marx.a)

marx_poles
0.7953
0.2877
-0.0564

In this case, you access the A polynomial using marx. a.

The model marx describes system dynamics using three discrete poles.

Tip You can also use pole to compute the poles of a model directly.
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Learn More

To learn more about estimating polynomial models, see “Input-Output Polynomial Models”.
For more information about accessing model data, see “Data Extraction”.

Estimating State-Space Models

About State-Space Models

The general state-space model structure is:

v Ax(t) + Bu(t) + Ke(t)

y(t) = Cx(t) + Du(t) + e(t)
y(t) represents the output at time £, u(t) represents the input at time ¢, x(t) is the state vector at time
t, and e(t) is the white-noise disturbance.

You must specify a single integer as the model order (dimension of the state vector) to estimate a
state-space model. By default, the delay equals 1.

The System Identification Toolbox product estimates the state-space matrices A, B, C, D, and K using
the model order and the data you specify.

The state-space model structure is a good choice for quick estimation because it contains only two
parameters: n is the number of poles (the size of the A matrix) and nk is the delay.

Estimating State-Space Models Using n4dsid

Use the n4sid command to specify a range of model orders and evaluate the performance of several
state-space models (orders 2 to 8):

mn4sid = n4sid(Zel,2:8, 'InputDelay',[4 9]);

This command uses the fast, noniterative (subspace) method and opens the following plot. You use
this plot to decide which states provide a significant relative contribution to the input/output
behavior, and which states provide the smallest contribution.
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The vertical axis is a relative measure of how much each state contributes to the input/output
behavior of the model (log of singular values of the covariance matrix). The horizontal axis
corresponds to the model order n. This plot recommends n=3, indicated by a red rectangle.

The Chosen Order order field displays the recommended model order, 3 in this case, by default. You
can change the order selection by using the Chosen Order drop-down list. Apply the value in the
Chosen Order field and close the order-selection window by clicking Apply.

By default, n4sid uses a free parameterization of the state-space form. To estimate a canonical form
instead, set the value of the SSParameterization property to 'Canonical' . You can also specify
the input-to-output delay (in samples) using the 'InputDelay' property.

mCanonical = n4sid(Zel,3, 'SSParameterization', 'canonical', 'InputDelay',[4 91);
present(mCanonical); % Display model properties

mCanonical =
Discrete-time identified state-space model:
X(t+Ts) = A x(t) + B u(t) + K e(t)
y(t) = C x(t) + D u(t) + e(t)

A =
x1 X2 x3
x1 0 1 0
X2 0 0 1

X3 0.0737 +/- 0.05919 -0.6093 +/- 0.1626 1.446 +/- 0.1287

B =

ConsumptionR Current
x1 1.844 +/- 0.175 0.5633 +/- 0.122
X2 1.063 +/- 0.1673 2.308 +/- 0.1222
x3 0.2779 +/- 0.09615 1.878 +/- 0.1058

C:
x1 x2 x3
Production 1 0 0
D:
ConsumptionR Current
Production 0 0
K:
Production

x1 0.8674 +/- 0.03169
x2 0.6849 +/- 0.04145
x3 0.5105 +/- 0.04352

Input delays (sampling periods): 4 9
Sample time: 0.5 minutes

Parameterization:
CANONICAL form with indices: 3.
Feedthrough: none
Disturbance component: estimate
Number of free coefficients: 12
Use "idssdata", "getpvec", "getcov" for parameters and their uncertainties.
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Status:

Estimated using N4SID on time domain data "Zel".
Fit to estimation data: 91.39% (prediction focus)
FPE: 2.402, MSE: 2.331

More information in model's "Report" property.

Note mn4sid and mCanonical are discrete-time models. To estimate a continuous-time model, set
the 'Ts' property to 0 in the estimation command, or use the ssest command:

mCTl = nd4sid(Zel, 3, 'Ts', 0, 'InputDelay', [2.5 5])
mCT2 = ssest(Zel, 3, 'InputDelay', [2.5 5])
Learn More

To learn more about estimating state-space models, see “State-Space Models”.

Estimating a Box-Jenkins Model
About Box-Jenkins Models

The general Box-Jenkins (B]) structure is:

S B9 -k + EDer)

YO = 2 FgU D(q)

i=
To estimate a B] model, you need to specify the parameters ny, ng n,, ng, and ny.

Whereas the ARX model structure does not distinguish between the poles for individual input/output
paths, the B] model provides more flexibility in modeling the poles and zeros of the disturbance
separately from the poles and zeros of the system dynamics.

Estimating a B) Model Using polyest

You can use polyest to estimate the B] model. polyest is an iterative method and has the following
general syntax:

polyest(data,[na nb nc nd nf nk]);

To estimate the B] model, type:

na = 0;
nb=[211;
nc = 1;
nd = 1;
nf=1[1211;
nk = [ 5 10];

mbj = polyest(Zel,[na nb nc nd nf nk]);

This command specifies nf=2 , nb=2, nk=5 for the first input, and nf=nb=1 and nk=10 for the
second input.

Display the model information.

present(mbj)
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mbj =
Discrete-time BJ model: y(t) = [B(z)/F(z)]lu(t) + [C(z)/D(z)]le(t)
B1(z) = 1.823 (+/- 0.1792) z~-5 - 1.315 (+/- 0.2367) z"-6

B2(z) = 1.791 (+/- 0.06431) z~-10

C(z) =1+ 0.1068 (+/- 0.04009) z~-1

D(z) =1 - 0.7452 (+/- 0.02694) z"-1

F1(z) = 1 - 1.321 (+/- 0.06936) z~-1 + 0.5911 (+/- 0.05514) z"-2
F2(z) =1 - 0.8314 (+/- 0.006441) z~-1

Sample time: 0.5 minutes

Parameterization:

Polynomial orders: nb=[2 1] nc=1 nd=1 nf=[2 1]

nk=[5 10]

Number of free coefficients: 8

Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.
Status:

Termination condition: Near (local) minimum, (norm(g) < tol)..
Number of iterations: 6, Number of function evaluations: 13

Estimated using POLYEST on time domain data "Zel".
Fit to estimation data: 90.75% (prediction focus)
FPE: 2.733, MSE: 2.689

More information in model's "Report" property.

The uncertainty for each of the model parameters is computed to 1 standard deviation and appears in
parentheses next to each parameter value.

The polynomials C and D give the numerator and the denominator of the noise model, respectively.

Tip Alternatively, you can use the following shorthand syntax that specifies the orders as a single
vector:

mbj = bj(Zel,[2 111215 10]);

bj is a version of polyest that specifically estimates the B] model structure.

Learn More

To learn more about identifying input-output polynomial models such as B], see “Input-Output
Polynomial Models”.

Comparing Model Output to Measured Output

Compare the output of the ARX, state-space, and Box-Jenkins models to the measured output.

compare(Zvl,marx,mnd4sid,mbj)
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Simulated Response Comparison
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compare plots the measured output in the validation data set against the simulated output from the
models. The input data from the validation data set serves as input to the models.

Perform residual analysis on the ARX, state-space, and Box-Jenkins models.

resid(Zvl,marx,mn4sid,mbj)
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Residue Correlation
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All three models simulate the output equally well and have uncorrelated residuals. Therefore, choose
the ARX model because it is the simplest of the three input-output polynomial models and adequately
captures the process dynamics.

Simulating and Predicting Model Output
Simulating the Model Output

In this portion of the tutorial, you simulate the model output. You must have already created the
continuous-time model midproc2, as described in “Estimating Process Models” on page 3-55.

Simulating the model output requires the following information:

* Input values to the model
» Initial conditions for the simulation (also called initial states)

For example, the following commands use the iddata and idinput commands to construct an input
data set, and use sim to simulate the model output:

% Create input for simulation

U = iddata([],idinput([200 2]),'Ts',0.5, 'TimeUnit"', 'min");

% Simulate the response setting initial conditions equal to zero
ysim 1 = sim(midproc2,U);

To maximize the fit between the simulated response of a model to the measured output for the same
input, you can compute the initial conditions corresponding to the measured data. The best fitting
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initial conditions can be obtained by using findstates on the state-space version of the estimated
model. The following commands estimate the initial states X0est from the data set Zv1:

% State-space version of the model needed for computing initial states
midproc2 ss = idss(midproc2);
XOest = findstates(midproc2 ss,Zvl);

Next, simulate the model using the initial states estimated from the data.

% Simulation input

Usim = Zv1(:,[1,:);

Opt = simOptions('InitialCondition', X0est);
ysim 2 = sim(midproc2_ss,Usim,Opt);

Compare the simulated and the measured output on a plot.

figure

plot([ysim 2.y, Zvl.y])
legend({'model output', 'measured'})
xlabel('time"'), ylabel('Output')
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Predicting the Future Output

Many control-design applications require you to predict the future outputs of a dynamic system using
the past input/output data.

For example, use predict to predict the model response five steps ahead:
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predict(midproc2,Zel,5)

Amplitude

Compare the predicted output values with the measured output values. The third argument of
compare specifies a five-step-ahead prediction. When you do not specify a third argument, compare

Froduction
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assumes an infinite prediction horizon and simulates the model output instead.

compare(Zel,midproc2,5)

500
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5-Step Predicted Response Comparison
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Use pe to compute the prediction error Err between the predicted output of midproc2 and the

measured output. Then, plot the error spectrum using the spec

[Err] = pe(midproc2,2Zvl);
spectrum(spa(Err,[],logspace(-2,2,200)))

400 450

trum command.
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Power Spectrum
From: e@e@Production To: e@Production

—D_ 5 . 1 1 1 B
102 10" 10° 10 102
Frequency (rad/minute)

The prediction errors are plotted with a 1-standard-deviation confidence interval. The errors are
greater at high frequencies because of the high-frequency nature of the disturbance.
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Identify Low-Order Transfer Functions (Process Models) Using
System ldentification App

Introduction

Objectives

Estimate and validate simple, continuous-time transfer functions from single-input/single-output
(SISO) data to find the one that best describes the system dynamics.

After completing this tutorial, you will be able to accomplish the following tasks using the System
Identification app :

* Import data objects from the MATLAB workspace into the app.

* Plot and process the data.

* Estimate and validate low-order, continuous-time models from the data.

* Export models to the MATLAB workspace.

* Simulate the model using Simulink software.

Note This tutorial uses time-domain data to demonstrate how you can estimate linear models. The
same workflow applies to fitting frequency-domain data.

Data Description

This tutorial uses the data file proc_data.mat, which contains 200 samples of simulated single-
input/single-output (SISO) time-domain data. The input is a random binary signal that oscillates
between -1 and 1. White noise (corresponding to a load disturbance) is added to the input with a
standard deviation of 0.2, which results in a signal-to-noise ratio of about 20 dB. This data is
simulated using a second-order system with underdamped modes (complex poles) and a peak
response at 1 rad/s:

1 -2s
Gs e —
(s) 14 0.2s + s2

The sample time of the simulation is 1 second.

What Is a Continuous-Time Process Model?

Continuous-time process models are low-order transfer functions that describe the system dynamics
using static gain, a time delay before the system output responds to the input, and characteristic time
constants associated with poles and zeros. Such models are popular in the industry and are often
used for tuning PID controllers, for example. Process model parameters have physical significance.

You can specify different process model structures by varying the number of poles, adding an
integrator, or including a time delay or a zero. The highest process model order you can specify in
this toolbox is three, and the poles can be real or complex (underdamped modes).

In general, a linear system is characterized by a transfer function G, which is an operator that takes
the input u to the output y:
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y=Gu

For a continuous-time system, G relates the Laplace transforms of the input U(s) and the output Y(s),
as follows:

In this tutorial, you estimate G using different process-model structures.

For example, the following model structure is a first-order, continuous-time model, where K is the
static gain, T); is a time constant, and T} is the input-to-output delay:

K -sTg

) = T551,1@

Preparing Data for System Identification
Loading Data into the MATLAB Workspace

Load the data in proc_data.mat by typing the following command in the MATLAB Command
Window:

load proc data

This command loads the data into the MATLAB workspace as the data object z. For more information
about iddata objects, see the corresponding reference page.

Opening the System Identification App

To open the System Identification app , type the following command at the MATLAB Command
Window:

systemIdentification

The default session name, Untitled, appears in the title bar.

System Identification - Untitled EI@
File Options Window Help
Import data hd Import models hd
‘ Operations. JL
<— Preprocess -
=
Working Data
Estimate —= hd
Data Views To To Model Views
Time plot Workspace || LTI Viewer Model output Transient resp Nonlinear ARX
Data spectra _ Model resids Frequency resp Hamm-Wiener
Freguency function ”” Zeros and poles
Noise spectrum
U Validation Data
Status line is here.
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Importing Data Objects into the System Identification App
You can import data object into the app from the MATLAB workspace.

You must have already loaded the sample data into MATLAB, as described in “Loading Data into the
MATLAB Workspace” on page 3-76, and opened the app, as described in “Opening the System
Identification App” on page 3-76.

To import a data object into the System Identification app :
1  Select Import data > Data object.
This action opens the Import Data dialog box.
impu-rt data b .
Import data

Time demain data...
Freq. domain data...

Example...

2 In the Import Data dialog box, specify the following options:
* Object — Enter z as the name of the MATLAB variable that is the time-domain data object.
Press Enter.

* Data name — Use the default name z, which is the same as the name of the data object you
are importing. This name labels the data in the System Identification app after the import
operation is completed.

* Starting time — Enter 0 as the starting time. This value designates the starting value of the
time axis on time plots.

* Sample time — Enter 1 as the time between successive samples in seconds. This value
represents the actual sample time in the experiment.

The Import Data dialog box now resembles the following figure.
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4 Import Data EI@

Data Format for Signals

IDDATA or IDFRINFRD -

Workspace Variable

Object: z
Type: IDDATA
(Time Domaint

Data Information

Drata name: z
Starting time: 0
Sample time: 1

More

| Import | | Reset |

| Close | | Help |

3  Click Import to add the data to the System Identification app. The app adds an icon to represent
the data.

Import data -
", Cperations

<— Preprocess -
z

t
A

Z

Working Data

4

Estimate — -

4 Click Close to close the Import Data dialog box.
Plotting and Processing Data

In this portion of the tutorial, you evaluate the data and process it for system identification. You learn
how to:

* Plot the data.
* Remove offsets by subtracting the mean values of the input and the output.
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» Split the data into two parts. You use one part of the data for model estimation, and the other part
of the data for model validation.

The reason you subtract the mean values from each signal is because, typically, you build linear
models that describe the responses for deviations from a physical equilibrium. With steady-state data,
it is reasonable to assume that the mean levels of the signals correspond to such an equilibrium.
Thus, you can seek models around zero without modeling the absolute equilibrium levels in physical
units.

You must have already imported data into the System Identification app, as described in “Importing
Data Objects into the System Identification App” on page 3-77.

To plot and process the data:

1  Select the Time plot check box to open the Time Plot window.

4] Time Plot: ul->yl [ [-E ]

File Options Style Channel Experiment Help

B Input and output signals

05 H

ul
=
T
I

=i L I 1Ll i i
0 20 40 60 80 100 120 140 160 180 200

Time

The bottom axes show the input data—a random binary sequence, and the top axes show the
output data.
The next two steps demonstrate how to modify the axis limits in the plot.

2 To modify the vertical-axis limits for the input data, select Options > Set axes limits in the Time
Plot figure window.

3 In the Limits for Time Plot dialog box, set the new vertical axis limit of the input data channel ul
to [-1.5 1.5]. Click Apply and Close.
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(B Limits for TimePlot. |- = | & |[mse)
Time [ Auto
[0 200] [ Log
¥1 Auto
[-5 5 [ Log
ul [T Auto
[-1.51.5] [ Log
[ Apply | | Close J

Note The other two fields in the Limits for Time Plot dialog box, Time and y1, let you set the
axis limits for the time axis and the output channel axis, respectively. You can also specify each
axis to be logarithmic or linear by selecting the corresponding option.

The following figure shows the updated time plot.

4| Time Plot: ul->y1 [ ]
File Options Style Channel Experiment Help
s Input and output signals
=0
-5 L I I
1
S0
-1
0 50 100 150 200
Time

4 In the System Identification app , select <--Preprocess > Quick start to perform the following
four actions:

* Subtract the mean value from each channel.
* Split the data into two parts.
* Specify the first part of the data as estimation data (or Working Data).
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* Specify the second part of the data as Validation Data.

Learn More

For information about supported data processing operations, such as resampling and filtering the
data, see “Preprocess Data”.

Estimating a Second-Order Transfer Function (Process Model) with
Complex Poles
Estimating a Second-Order Transfer Function Using Default Settings

In this portion of the tutorial, you estimate models with this structure:

K -Tgs
G(s) = e 'd
) (1+28Tys + Ty25?)

You must have already processed the data for estimation, as described in “Plotting and Processing
Data” on page 3-78.

To identify a second-order transfer function:

1 In the System Identification app, select Estimate > Process models to open the Process Models
dialog box.

Estimate —= -

Estimate —
Transfer Function Models...
State Space Models...

Polynomial KModels... k

Neonlinear Models...
Spectral Models...
Correlation Models...
Refine Existing Models...
Quick Start

2 In the Model Transfer Function area of the Process Models dialog box, specify the following
options:

* Under Poles, select 2 and Underdamped.

This selection updates the Model Transfer Function to a second-order model structure that
can contain complex poles.

* Make sure that the Zero and Integrator check boxes are cleared to exclude a zero and an
integrator (self-regulating ) from the model.
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Model Transfer Function

K expl(-Td s}

(1+(2ZetaTw) s+ (Tw s)*2)

Poles

2 * | |Underdamped -

Zero
| Delay

Integrator

The Parameter area of the Process Models dialog box now shows four active parameters: K, Tw,
Zeta, and Td. In the Initial Guess area, keep the default Auto-selected option to calculate
the initial parameter values during the estimation. The Initial Guess column in the Parameter
table displays Auto.

Keep the default Bounds values, which specify the minimum and maximum values of each
parameter.

Tip If you know the range of possible values for a parameter, you can type these values into the
corresponding Bounds fields to help the estimation algorithm. Press the Enter key after you
specify the values.

Keep the default settings for the estimation algorithm:

* Disturbance Model — None means that the algorithm does not estimate the noise model.
This option also sets the Focus to Simulation.

* Focus — Simulation means that the estimation algorithm does not use the noise model to
weigh the relative importance of how closely to fit the data in various frequency ranges.
Instead, the algorithm uses the input spectrum in a particular frequency range to weigh the
relative importance of the fit in that frequency range.

Tip The Simulation setting is optimized for identifying models that you plan to use for
output simulation. If you plan to use your model for output prediction or control applications,
or to improve parameter estimates using a noise model, select Prediction.

* Initial condition — Auto means that the algorithm analyzes the data and chooses the
optimum method for handling the initial state of the system. If you get poor results, you might
try setting a specific method for handling initial states, rather than choosing it automatically.

* Covariance — Estimate means that the algorithm computes parameter uncertainties that
display as model confidence regions on plots.

The app assigns a name to the model, shown in the Name field (located at the bottom of the
dialog box). By default, the name is the acronym P2DU, which indicates two poles (P2), a delay
(D), and underdamped modes (U).
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Process Models

=5 =]

Model Transfer Function

Kexp(-Td =)

{1+ (2 Zeta Tw) = + (Tw s)*2)

Parameter Known

K

Tw

Zeta

Value

Initial Guess Bounds

Auto [-Inf Inf]

Aute [0 Inf]

Aute [0 Inf]

[0 Inf]
[-Inf Inf]

Td Auto [0 3]

Initial Guess
Zero

@) Auto-selected
| Delay

From existing model:
Integrator

‘Value—=Initial Guess

Regqularization...
Options...

Stop terations

User-defined

Disturbance Model: Initial condition:

Mone - Auto hd

Focus: Covariance:

Simulation - Estimate -

Display progress

Name:

P20l | Estimate | | Close | | Help |

6 Click Estimate to add the model P2DU to the System Identification app.
Tips for Specifying Known Parameters

If you know a parameter value exactly, you can type this value in the Value column of the Process
Models dialog box. Select the corresponding Known check box after you specify the value.

If you know the approximate value of a parameter, you can help the estimation algorithm by entering
an initial value in the Initial Guess column. In this case, keep the Known check box cleared to allow
the estimation to fine-tune this initial guess.

For example, to fix the time-delay value Td at 2s, type this value into Value field of the Parameter
table in the Process Models dialog box. Then select the corresponding Known check box.

Validating the Model
You can analyze the following plots to evaluate the quality of the model:

* Comparison of the model output and the measured output on a time plot
* Autocorrelation of the output residuals, and cross-correlation of the input and the output residuals

You must have already estimated the model, as described in “Estimating a Second-Order Transfer
Function Using Default Settings” on page 3-81.
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Examining Model Output

You can use the model-output plot to check how well the model output matches the measured output
in the validation data set. A good model is the simplest model that best describes the dynamics and
successfully simulates or predicts the output for different inputs.

To generate the model-output plot, select the Model output check box in the System Identification
app. If the plot is empty, click the model icon in the System Identification app window to display the
model on the plot.

Model Output: y1 EI@

File Options Style Channel Expenment Help

Measured and simulated model output

Best Fits
P20 77.56

-2

_4 1 1 1 1
100 120 140 160 180 200
Time

The System Identification Toolbox software uses input validation data as input to the model, and plots
the simulated output on top of the output validation data. The preceding plot shows that the model
output agrees well with the validation-data output.

The Best Fits area of the Model Output plot shows the agreement (in percent) between the model
output and the validation-data output.

Recall that the data was simulated using the following second-order system with underdamped modes
(complex poles), as described in “Data Description” on page 3-75, and has a peak response at 1 rad/s:

1 -2
G(s) = ——e S
(5) 1+0.2s + s2

Because the data includes noise at the input during the simulation, the estimated model cannot
exactly reproduce the model used to simulate the data.

Examining Model Residuals
You can validate a model by checking the behavior of its residuals.

To generate a Residual Analysis plot, select the Model resids check box in the System Identification
app.
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Residual Analysis: ul-=yl EI@

File Options Style  Channel Help

Autocorrelation of residuals for output y1

-1 . . L

Cross corr forinput u? and output y1 resids

0.5

0 \/\‘W\AN\
-0.5 :

-20 -10 0 10 20

Samples

The top axes show the autocorrelation of residuals for the output (whiteness test). The horizontal
scale is the number of lags, which is the time difference (in samples) between the signals at which the
correlation is estimated. Any fluctuations within the confidence interval are considered to be
insignificant. A good model should have a residual autocorrelation function within the confidence
interval, indicating that the residuals are uncorrelated. However, in this example, the residuals
appear to be correlated, which is natural because the noise model is used to make the residuals
white.

The bottom axes show the cross-correlation of the residuals with the input. A good model should have
residuals uncorrelated with past inputs (independence test). Evidence of correlation indicates that
the model does not describe how a portion of the output relates to the corresponding input. For
example, when there is a peak outside the confidence interval for lag k, this means that the
contribution to the output y(t) that originates from the input u(t-k) is not properly described by the
model. In this example, there is no correlation between the residuals and the inputs.

Thus, residual analysis indicates that this model is good, but that there might be a need for a noise
model.

Estimating a Process Model with a Noise Component
Estimating a Second-Order Process Model with Complex Poles

In this portion of the tutorial, you estimate a second-order transfer function and include a noise
model. By including a noise model, you optimize the estimation results for prediction application.

You must have already estimated the model, as described in “Estimating a Second-Order Transfer
Function Using Default Settings” on page 3-81.

To estimate a second-order transfer function with noise:

1 [f the Process Models dialog box is not open, select Estimate > Process Models in the System
Identification app. This action opens the Process Models dialog box.
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Eztimate —= -

Estimate —=
Tranzfer Function Models...
State Space Models...

Pohynomial Models... h‘

Neonlinear Models. ..
Spectral Models. ..
Correlation Models...
Refine Existing Models...
Quick Start

2 In the Model Transfer Function area, specify the following options:

* Under Poles, select 2 and Underdamped. This selection updates the Model Transfer Function
to a second-order model structure that can contain complex poles. Make sure that the Zero
and Integrator check boxes are cleared to exclude a zero and an integrator (self-regulating )
from the model.

Model Transfer Function

K exp(-Td s)

(1+(2ZetaTw) s+ (Tw=s)*2)

Poles

2 * | | Underdamped -

|:| Zero
Delay

|:| Integrator

* Disturbance Model — Set to Order 1 to estimate a noise model H as a continuous-time,
first-order ARMA model:

_C
H—ﬁe

where and D are first-order polynomials, and e is white noise.

This action specifies the Focus as Prediction, which improves accuracy in the frequency
range where the noise level is low. For example, if there is more noise at high frequencies, the
algorithm assigns less importance to accurately fitting the high-frequency portions of the
data.

* Name — Edit the model name to P2DUel to generate a model with a unique name in the
System Identification app.
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Click Estimate.

4 In the Process Models dialog box, set the Disturbance Model to Order 2 to estimate a second-
order noise model.

5 Edit the Name field to P2DUe2 to generate a model with a unique name in the System
Identification app.

6 Click Estimate.
Validating the Models

In this portion of the tutorial, you evaluate model performance using the Model Output and the
Residual Analysis plots.

You must have already estimated the models, as described in “Estimating a Second-Order Transfer
Function Using Default Settings” on page 3-81 and “Estimating a Second-Order Process Model with
Complex Poles” on page 3-85.

Comparing the Model Output Plots

To generate the Model Output plot, select the Model output check box in the System Identification
app. If the plot is empty or a model output does not appear on the plot, click the model icons in the
System Identification app window to display these models on the plot.

The following Model Output plot shows the simulated model output, by default. The simulated

response of the models is approximately the same for models with and without noise. Thus, including
the noise model does not affect the simulated output.

Measured and simulated model output

4
Best Fits

P2DUel: 79.67

2t 1 [P2DUe1: 78.33
P20 77 56

_4 1 1 1 1
100 120 140 160 180 200
Time

To view the predicted model output, select Options > 5 step ahead predicted output in the Model
Output plot window.

The following Model Output plot shows that the predicted model output of P2DUe2 (with a second-

order noise model) is better than the predicted output of the other two models (without noise and
with a first-order noise model, respectively).
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Measured and 5 step predicted output

4
Best Fits
P2DUe2: 78 64
2t 4 [P2DUe1.78.5
P20 77.56
0 1
a2 J

_4 1 1 1 1
100 120 140 160 180 200
Time

Comparing the Residual Analysis Plots

To generate the Residual Analysis plot, select the Model resids check box in the System
Identification app. If the plot is empty, click the model icons in the System Identification app window
to display these models on the plot.

P2DUe?2 falls well within the confidence bounds on the Residual Analysis plot.

Residual Analysis: ul-»y1 EI@

File Options Style  Channel Help

Autocorrelation of residuals for output y1

Samples

To view residuals for P2DUe?2 only, remove models P2DU and P2DUel from the Residual Analysis plot
by clicking the corresponding icons in the System Identification app.
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Import models -

1
(T s

P2DU P20Uel || P2DUe2

The Residual Analysis plot updates, as shown in the following figure.

Autocorrelation of residuals for output y1

Samples

The whiteness test for P2DUe2 shows that the residuals are uncorrelated, and the independence test
shows no correlation between the residuals and the inputs. These tests indicate that P2DUe2 is a
good model.

Viewing Model Parameters
Viewing Model Parameter Values

You can view the numerical parameter values and other information about the model P2DUe2 by
right-clicking the model icon in the System Identification app . The Data/model Info dialog box opens.

3-89



3 Linear Model Identification

4| Datafmodel Info: P2DUe2 (o ===
Model name: P2DUa2
Color: [1.0,0]
Process model with transfer function: -
Kp
G(3) = ——————m—m— * exp(-Td*s) =

1+2*Zeta*Twea+ (Tw*s) ~2

Kp = 0.99738
Tw = 0.99874
Zeta = 0.10829
Id = 2.0058 -
Ll i 3
Diary and Notes
-
Import z

d = dtrend(z,0)
de = zd([1:100]})

%
Z
Z

P2DUe2 = pem(zde, "P2DU"'Dist', "ARMA2");

Show in LTI Viewer

e ] [Cowon ] [ome ] [ ]

The noneditable area of the dialog box lists the model coefficients that correspond to the following
model structure:

K —-Tgs
G(s) = e
(s) (1 +2ETys + Ty25%)

The coefficients agree with the model used to simulate the data:

1 -2
G(s) = e 4
(s) 1+0.2s + 52

Viewing Parameter Uncertainties

To view parameter uncertainties for the system transfer function, click Present in the Data/model
Info dialog box, and view the information in the MATLAB Command Window.

Kp = 0.99821 +/- 0.019982
Tw = 0.99987 +/- 0.0037697
Zeta = 0.10828 +/- 0.0042304
Td = 2.004 +/- 0.0029717
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The 1-standard-deviation uncertainty for each model parameter follows the +/ - symbol.

P2DUe2 also includes an additive noise term, where H is a second-order ARMA model and e is white
noise:

_C
H—Ee

The software displays the noise model H as a ratio of two polynomials, C(s)/D(s), where:

s™2 + 2.186 (+/- 0.08467) s + 1.089 (+/- 0.07951)
s™2 + 0.2561 (+/- 0.09044) s + 0.5969 (+/- 0.3046)

The 1-standard deviation uncertainty for the model parameters is in parentheses next to each
parameter value.

Exporting the Model to the MATLAB Workspace

You can perform further analysis on your estimated models from the MATLAB workspace. For
example, if the model is a plant that requires a controller, you can import the model from the
MATLAB workspace into the Control System Toolbox product. Furthermore, to simulate your model in
the Simulink software (perhaps as part of a larger dynamic system), you can import this model as a
Simulink block.

The models you create in the System Identification app are not automatically available in the
MATLAB workspace. To make a model available to other toolboxes, Simulink, and the System
Identification Toolbox commands, you must export your model from the System Identification app to
the MATLAB workspace.

To export the P2DUe2 model, drag the model icon to the To Workspace rectangle in the System
Identification app. Alternatively, click Export in the Data/model Info dialog box. The model now
appears in the MATLAB Workspace browser.

4\ Workspace E'@

File Edit View Graphics Debug Desktop Window Help o
E ﬁ {E Eﬁ % Stack: | Base @Selectdata to plot -
Mame Value Min Max

&) P2DUe2 <1xl idproc>

Note This model is an idproc model object.
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Simulating a System Ildentification Toolbox Model in Simulink Software
Prerequisites for This Tutorial

In this tutorial, you create a simple Simulink model that uses blocks from the System Identification
Toolbox library to bring the data z and the model P2DUe2 into Simulink.

To perform the steps in this tutorial, Simulink must be installed on your computer.

Furthermore, you must have already performed the following steps:

* Load the data set, as described in “Loading Data into the MATLAB Workspace” on page 3-76.

* Estimate the second-order process model, as described in “Estimating a Second-Order Process
Model with Complex Poles” on page 3-85.

* Export the model to the MATLAB workspace, as described in “Exporting the Model to the MATLAB
Workspace” on page 3-91.
Preparing Input Data

Use the input channel of the data set z as input for simulating the model output by typing the
following in the MATLAB Command Window:

Creates a new iddata object.
Sets the output channel
% to empty.

z input

= Z;
z input.y =

[1; %
Alternatively, you can specify any input signal.

Learn More

For more information about representing data signals for system identification, see “Representing
Data in MATLAB Workspace”.

Building the Simulink Model

To add blocks to a Simulink model:

1
On the MATLAB Home tab, click '-E-' Simulink.

2 In the Simulink start page, click Blank Model. Then click Create Model to open a new model
window.

In the Simulink model window, click B to open the Library Browser. In the Library Browser,
select the System Identification Toolbox library. The right side of the window displays blocks
specific to the System Identification Toolbox product.

Tip Alternatively, to access the System Identification block library, type slident in the MATLAB
Command Window.

4 Drag the following System Identification Toolbox blocks to the new model window:

» IDDATA Sink block
» IDDATA Source block
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 IDMODEL model block

In the Simulink Library Browser, select the Simulink > Sinks library, and drag the Scope block
to the new model window.

In the Simulink model window, connect the blocks to resembles the following figure.

¥

Input

IDDATA SIMNK
Output
lddats Sink
Input | idss{-1,1,1,0) » I:l

iddata{1,1} -

Cope

Output |dmodel

Iddata Source

Next, you configure these blocks to get data from the MATLAB workspace and set the simulation time
interval and duration.

Configuring Blocks and Simulation Parameters

This procedure guides you through the following tasks to configure the model blocks:

Getting data from the MATLAB workspace.
Setting the simulation time interval and duration.

In the Simulink Editor, select Modeling > Model Settings > Model Settings Ctrl+E.

In the Configuration Parameters dialog box, in the Solver subpane, in the Stop time field, type
200. Click OK.

This value sets the duration of the simulation to 200 seconds.

Double-click the Iddata Source block to open the Source Block Parameters: Iddata Source dialog
box. Then, type the following variable name in the IDDATA object field:

z_input

This variable is the data object in the MATLAB workspace that contains the input data.
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Source Block Parameters: Iddata Source @
Iddata InputOutput (mask) (link)

This block allows to import IDDATA object from the MATLAB
Workspace.

The first output port of the block corresponds to the input signal of
the IDDATA object and the second output port corresponds to the
output signal.

Enter an IDDATA object in the edit field.

Parameters

IDDATA object

z_inpuﬂ

[ OK H Cancel H Help H Apply ‘

Tip As a shortcut, you can drag and drop the variable name from the MATLAB Workspace
browser to the IDDATA object field.

Click OK.
Double-click the Idmodel block to open the Function Block Parameters: Idmodel dialog box.

a Type the following variable name in the Model variable field:

P2DUe2

This variable represents the name of the model in the MATLAB workspace.
b Clear the Add noise check box to exclude noise from the simulation. Click OK.

When Add noise is selected, Simulink derives the noise amplitude from the
NoiseVariance property of the model and adds noise to the model accordingly. The
simulation propagates this noise according to the noise model H that was estimated with the
system dynamics:

C

H=5e
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Function Block Parameters: Idmodel @
Idmodel Block (mask) (link)

The Idmodel block accepts any of the linear identified models - state
space (idss), linear grey box (idgrey), polynomial (idpoly), transfer
function (idtf) or process (idproc) models. Internally, models will be
converted to their state space equivalent for evaluation.

Initial states are only meaningful for state-space models (idss,
idgrey).

For simulations with noise, Seed(s) may be left empty for random
restarts.

Enter as many seeds as there are outputs for specific realizations.

Parameters
Identified model
F2DUe2

Initial states (state space only: idss, idgrey)

]
[C] Add noise
Noise seed(s). Default empty
f
[ OK ] I Cancel I [ Help J I Apply
Click OK.

Double-click the Iddata Sink block to open the Sink Block Parameters: Iddata Sink dialog box.
Type the following variable name in the IDDATA Name field:

Zz sim out

Type 1 in the Sample Time (sec.) field to set the sample time of the output data to match the
sample time of the input data.
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"] Sink Block Parameters: Iddata Sink [==al

IDDATA Sink (mask) (link)

Export simulation data to workspace as IDDATA object. The object
stores input and output signals sampled at the specified sample time
when simulation stops. The object is created in the MATLAB base
workspace when simulating from the model window or caller
workspace when simulating programmatically.

Specify the variable name in "IDDATA Name". Specify a positive
number, representing the sampling interval, in "Sample Time".

Parameters

IDDATA Name

Z_sim_out

Sample Time (sec.)

1

[ OK H Cancel H Help H Apply

Click OK.

The resulting change to the Simulink model is shown in the following figure.

¥ Input
IDDATA SIMNK
Output
Iddata Sink
z_input Input - F2DUe2 - |:|
ldmadel Scope

Iddata Source

Running the Simulation

1 In the Simulink Editor, select Simulation > Run.
2 Double-click the Scope block to display the time plot of the model output.
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3 In the MATLAB Workspace browser, notice the variable z sim out that stores the model output
as an iddata object. You specified this variable name when you configured the Iddata Sink
block.

This variable stores the simulated output of the model, and it is now available for further
processing and exploration.

See Also

More About
. “What Is a Process Model?”
. “Estimate Process Models Using the App”
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Estimating Models Using Frequency-Domain Data

3-98

The System Identification Toolbox software lets you use frequency-domain data to identify linear
models at the command line and in the System Identification app. You can estimate both
continuous-time and discrete-time linear models using frequency-domain data. This topic presents an
overview of model estimation in the toolbox using frequency-domain data. For an example of model
estimation using frequency-domain data, see “Frequency Domain Identification: Estimating Models
Using Frequency Domain Data”.

Frequency-domain data can be of two types:

* Frequency domain input-output data — You obtain the data by computing Fourier transforms of
time-domain input, u(t), and output, y(t), signals. The data is the set of input, U(w), and output,
Y(w), signals in frequency domain. In the toolbox, frequency-domain input-output data is
represented using iddata objects. For more information, see “Representing Frequency-Domain
Data in the Toolbox” on page 3-99.

* Frequency-response data — Also called frequency function or frequency-response function (FRF),
the data consists of transfer function measurements, G(iw), of a system at a discrete set of
frequencies w. Frequency-response data at a frequency w tells you how a linear system responds
to a sinusoidal input of the same frequency. In the toolbox, frequency-response data is represented
using idfrd objects. For more information, see “Representing Frequency-Domain Data in the
Toolbox” on page 3-99. You can obtain frequency-response data in the following ways:

* Measure the frequency-response data values directly, such as by using a spectrum analyzer.

* Perform spectral analysis of time-domain or frequency-domain input-output data (iddata
objects) using commands such as spa and spafdr.

* Compute the frequency-response of an identified linear model using commands such as
fregresp, bode, and idfrd.

The workflow for model estimation on page 2-3 using frequency-domain data is the same as that for
estimation using time-domain data. If needed, you first prepare the data for model identification by
removing outliers and filtering the data. You then estimate a linear parametric model from the data,
and validate the estimation.

Advantages of Using Frequency-Domain Data

Using frequency-domain data has the following advantages:

* Data compression — You can compress long records of data when you convert time-domain data to
frequency domain. For example, you can use logarithmically spaced frequencies.

* Non uniformity — Frequency-domain data does not have to be uniformly spaced. Your data can
have frequency-dependent resolution so that more data points are used in the frequency regions
of interest. For example, the frequencies of interest could be the bandwidth range of a system, or
near the resonances of a system.

» Prefiltering — Prefiltering of data in the frequency-domain becomes simple. It corresponds to
assigning different weights to different frequencies of the data.

* Continuous-time signal - You can represent continuous-time signals using frequency-domain data
and use the data for estimation.
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Representing Frequency-Domain Data in the Toolbox

Before performing model estimation, you specify the frequency-domain data as objects in the toolbox.
You can specify both continuous-time and discrete-time frequency-domain data on page 3-102.

Frequency domain input-output data — Specify as an iddata object. In the object, you store
U(w), Y(w), and frequency vector w. The Domain property of the object is ' Frequency', to
specify that the object contains frequency-domain signals. If U(w), Y(w) are discrete-time Fourier
transforms of discrete-time signals, sampled with sampling interval Ts, denote the sampling
interval in the iddata object. If U(w), Y(w) are Fourier transforms of continuous-time signals,
specify Ts as 0 in the iddata object.

To plot the data at the command line, use the plot command.
For example, you can plot the phase and magnitude of frequency-domain input-output data.

Load time-domain input-output data.
load iddatal z1

The time-domain inputs u and outputs y are stored in z1, an iddata object whose Domain
property is set to 'Time"'.

Fourier-transform the data to obtain frequency-domain input-output data.

zf = fft(zl);

The Domain property of zf is set to ' Frequency', indicating that it is frequency-domain data.
Plot the magnitude and phase of the frequency-domain input-output data.

plot(zf)
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Input-Output Data
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* Frequency-response data — Specify as an idfrd object. If you have Control System Toolbox
software, you can also specify the data as an frd object.

To plot the data at the command line, use the bode command.

For example, you can plot the frequency-response of a transfer function model.

Create a transfer function model of your system.

sys = tf([1 0.2],[1 2 1 1]);

Calculate the frequency-response of the transfer function model, sys, at 100 frequency points.
Specify the range of the frequencies as 0.1 rad/s to 10 rad/s.

freq = logspace(-1,1,100);
frdModel = idfrd(sys,freq);

Plot the frequency-response of the model.

bode (frdModel)
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For more information about the frequency-domain data types and how to specify them, see

“Frequency-Domain Data Representation”.

You can also transform between frequency-domain and time-domain data types using the following

commands.
Original Data To Time-Domain To Frequency- To Frequency-Response Data
Format Data Domain Data (idfrd object)

(iddata object)

(iddata object)

Time-Domain
Data
(iddata object)

N/A

Use fft

* Use etfe, spa, or spafdr.

* Estimate a linear parametric
model from the iddata object,
and use idfrd to compute
frequency-response data.

Frequency-
Domain Data
(iddata object)

Use ifft (works only
for evenly spaced
frequency-domain
data).

N/A

* Use etfe, spa, or spafdr.

* Estimate a linear parametric
model from the iddata object,
and use idfrd to compute
frequency-response data.
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Original Data To Time-Domain To Frequency- To Frequency-Response Data
Format Data Domain Data (idfrd object)
(iddata object) (iddata object)
Frequency- Not supported Use iddata. The * Use spafdr. The software
Response Data software creates a calculates frequency-response
(idfrd object) frequency-domain data with a different resolution
iddata object that (number and spacing of
has the same ratio frequencies) than the original
between output and data.
input as the original
idfrd object
frequency-response
data.

For more information about transforming between data types in the app or at the command line, see
the “Transform Data” category page.

Continuous-Time and Discrete-Time Frequency-Domain Data

Unlike time-domain data, the sample time Ts of frequency-domain data can be zero. Frequency-
domain data with zero Ts is called continuous-time data. Frequency-domain data with Ts greater
than zero is called discrete-time data.

You can obtain continuous-time frequency-domain data (Ts = 0) in the following ways:
* Generate the data from known continuous-time analytical expressions.

For example, suppose that you know the frequency-response of your system is G(w) = 1/(b + jw),
where b is a constant. Also assume that the time-domain inputs to your system are,

u(t) = e~ sinwyt, where a is a constant greater than zero, and u(t) is zero for all times t less than
zero. You can compute the Fourier transform of u(t) to obtain

U(w) = w/l(a + jw)* + wg2]

Using U(w) and G(w) you can then get the frequency-domain expression for the outputs:

You can now evaluate the analytical expressions for Y(w) and U(w) over a grid of frequency values
(Wgrig = w1, Wy, ..., wp), and get a vector of frequency-domain input-output data values (Y grig, Ugriq)-
You can package the input-output data as a continuous-time iddata object by specifying a zero
sample time, Ts.

Ts
zf

* Compute the frequency response of a continuous-time linear system at a grid of frequencies.

0;
iddata(Ygrid,Ugrid,Ts, 'Frequency',wgrid)

For example, in the following code, you generate continuous-time frequency-response data, FRDc,
from a continuous-time transfer function model, sys for a grid of frequencies, freq.

sys = idtf(1,[1 2 21);
freq = logspace(-2,2,100);
FRDc idfrd(sys,freq);
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* Measure amplitudes and phases from a sinusoidal experiment, where the measurement system
uses anti-aliasing filters. You measure the response of the system to sinusoidal inputs at different
frequencies, and package the data as an idfrd object. For example, the frequency-response data
measured with a spectrum analyzer is continuous-time.

You can also conduct an experiment by using periodic, continuous-time signals (multiple sine
waves) as inputs to your system and measuring the response of your system. Then you can
package the input and output data as an iddata object.

You can obtain discrete-time frequency-domain data (Ts >0) in the following ways:

* Transform the measured time-domain values using a discrete Fourier transform.

For example, in the following code, you compute the discrete Fourier transform of time-domain
data, y, that is measured at discrete time-points with sample time 0.01 seconds.

t =0:0.01:10;
y = iddata(sin(2*pi*10*t),[],0.01);
Y = fft(y);

* Compute the frequency response of a discrete-time linear system.

For example, in the following code, you generate discrete-time frequency-response data, FRDd,
from a discrete-time transfer function model, sys. You specify a non-zero sample time for creating
the discrete-time model.

Ts = 1;
sys = idtf(1,[1 0.2 2.1],Ts);
FRDd = idfrd(sys, logspace(-2,2,100));

You can use continuous-time frequency-domain data to identify only continuous-time models. You can
use discrete-time frequency-domain data to identify both discrete-time and continuous-time models.
However, identifying continuous-time models from discrete-time data requires knowledge of the
intersample behavior of the data. For more information, see “Estimating Continuous-Time and
Discrete-Time Models” on page 3-105.

Note For discrete-time data, the software ignores frequency-domain data above the Nyquist
frequency during estimation.

Preprocessing Frequency-Domain Data for Model Estimation

After you have represented your frequency-domain data using iddata or idfrd objects, you can
prepare the data for estimation by removing spurious data and by filtering the data.

To view the spurious data, plot the data in the app, or use the plot (for iddata objects) or bode (for
idfrd objects) commands. After identifying the spurious data in the plot, you can remove them. For
example, if you want to remove data points 20-30 from zf, a frequency-domain iddata object, use
the following syntax:

zf(20:30) = [];
Since frequency-domain data does not have to be specified with a uniform spacing, you do not need to

replace the outliers.
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You can also prefilter high-frequency noise in your data. You can prefilter frequency-domain data in
the app, or use idfilt at the command line. Prefiltering data can also help remove drifts that are
low-frequency disturbances. In addition to minimizing noise, prefiltering lets you focus your model on
specific frequency bands. The frequency range of interest often corresponds to a passband over the
breakpoints on a Bode plot. For example, if you are modeling a plant for control-design applications,
you can prefilter the data to enhance frequencies around the desired closed-loop bandwidth.

For more information, see “Filtering Data”.

Estimating Linear Parametric Models

After you have preprocessed the frequency-domain data, you can use it to estimate continuous-time
and discrete-time models on page 3-105.

Supported Model Types

You can estimate the following linear parametric models using frequency-domain data. The noise
component of the models is not estimated, except for ARX models.

Model Type Additional Estimation Estimation in the App
Information Commands
“Transfer Function + tfest See “Estimate Transfer
Models” Function Models in the
System Identification
App”.
“State-Space Models” |Estimated K matrix of | ssest See “Estimate State-
the state-space modelis |, 45ig Space Models in System
ZEro. Identification App”.
“Process Models” Disturbance model is * procest See “Estimate Process
not estimated. Models Using the App”.
“Input-Output You can estimate only * oe See “Estimate
Polynomial Models” output-error and ARX |, 5px Polynomial Models in
models. i the App”.
e 1iv4
o ivx
* polyest with na,
nc, and nd orders of
the polynomial
specified as zero
“Linear Grey-Box Model parameters that |[* greyest Grey-box model
Models” are only related to the estimation is not
noise matrix K are not available in the app.
estimated.
“Correlation Models” * impulseest See “Estimate Impulse-
(Impulse-response Response Models Using
models) System Identification
App”.
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Model Type Additional Estimation Estimation in the App
Information Commands

“Frequency-Response ¢+ etfe See “Estimate

Models” . spa Frequency-Response

(Estimated as idfrd Models in the App”.

objects) * spafdr

Before performing the estimation, you can specify estimation options, such as how the software treats
initial conditions of the estimation data. To do so at the command line, use the estimation option set
corresponding to the estimation command. For example, suppose that you want to estimate a transfer
function model from frequency-domain data, zf, and you also want to estimate the initial conditions
of the data. Use the tfestOptions option set to specify the estimation options, and then estimate
the model.

tfestOptions('InitialCondition', 'estimate');
tfest(zf,opt);

opt
sys

sys is the estimated transfer function model. For information about extracting estimated parameter
values from the model, see “Extracting Numerical Model Data”. After performing the estimation, you
can validate the estimated model on page 3-108.

Note A zero initial condition for time-domain data does not imply a zero initial condition for the
corresponding frequency-domain data. For time-domain data, zero initial conditions mean that the
system is assumed to be in a state of rest before the start of data collection. In the frequency-domain,
initial conditions can be ignored only if the data collected is periodic in nature. Thus, if you have time-
domain data collected with zero initial conditions, and you convert it to frequency-domain data to
estimate a model, you have to estimate the initial conditions as well. You cannot specify them as zero.

You cannot perform the following estimations using frequency-domain data:

* Estimation of the noise component of a linear model, except for ARX models.
* Estimation of nonlinear models.

» Estimation of time series models using spectrum data only. Spectrum data is the power spectrum
of a signal, commonly stored in the SpectrumData property of an idfrd object.

* Online estimation using recursive algorithms.
Estimating Continuous-Time and Discrete-Time Models

You can estimate all the supported linear models on page 3-104 as discrete-time models, except for
process models. Process models are defined in continuous-time only. For the estimation of discrete-
time models, you must use discrete-time data.

You can estimate all the supported linear models as continuous-time models, except for correlation
models (see impulseest). You can estimate continuous-time models using both continuous-time and
discrete-time data. For information about continuous-time and discrete-time data, see “Continuous-
Time and Discrete-Time Frequency-Domain Data” on page 3-102.

If you are estimating a continuous-time model using discrete-time data, you must specify the
intersample behavior of the data. The specification of intersample behavior depends on the type of
frequency-domain data.
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» Discrete-time frequency-domain input-output data (iddata object) — Specify the intersample
behavior of the time-domain input signal u(t) that you Fourier transformed to obtain the
frequency-domain input signal U(w).

» Discrete-time frequency-response data (idfrd object) — The data is generated by computing the
frequency-response of a discrete-time model. Specify the intersample behavior as the
discretization method assumed to compute the discrete-time model from an underlying
continuous-time model. For an example, see “Specify Intersample Behavior for Discrete-Time
Frequency-Response Data” on page 3-106.

You can specify the intersample behavior to be piecewise constant (zero-order hold), linearly
interpolated between the samples (first-order hold), or band-limited. If you specify the discrete-time
data from your system as band-limited (that is no power above the Nyquist frequency), the software
treats the data as continuous-time by setting the sample time to zero. The software then estimates a
continuous-time model from the data. For more information, see “Effect of Input Intersample
Behavior on Continuous-Time Models”.

Specify Intersample Behavior for Discrete-Time Frequency-Response Data

This example shows the effect of intersample behavior on the estimation of continuous-time models
using discrete-time frequency-response data.

Generate discrete-time frequency-response data. To do so, first construct a continuous-time transfer
function model, sys. Then convert it to a discrete-time model, sysd, using the c2d command and
first-order hold (FOH) method. Use the discrete-time model sysd to generate frequency-response
data at specified frequencies, freq.

sys = idtf([1 0.2],[1 2 1 1]);

sysd c2d(sys,1,c2d0Options('Method"', 'foh"));
freq = logspace(-1,0,10);

FRdata = idfrd(sysd,freq);

FRdata is discrete-time data. The software sets the InterSample property of FRdata to ' foh',
which is the discretization method that was used to obtain sysd from sys.

Estimate a third-order continuous-time transfer function from the discrete-time data.

modell

tfest(FRdata,3,1)

modell

s"3 +25s™2 +s +1
Continuous-time identified transfer function.

Parameterization:
Number of poles: 3 Number of zeros: 1
Number of free coefficients: 5
Use "tfdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:

Estimated using TFEST on frequency response data "FRdata".
Fit to estimation data: 100%

FPE: 5.173e-31, MSE: 1.748e-31
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modell is a continuous-time model, estimated using discrete-time frequency-response data. The
underlying continuous-time dynamics of the original third-order model sys are retrieved in modell
because the correct intersample behavior is specified in FRdata.

Now, specify the intersample behavior as zero-order hold (ZOH), and estimate a third-order transfer
function model.

FRdata.InterSample = 'zoh';
model2 = tfest(FRdata,3,1)

model2 =

-15.57 s - 3.305

s”"3 - 30.01 s™2 - 6.957 s - 17
Continuous-time identified transfer function.

Parameterization:
Number of poles: 3 Number of zeros: 1
Number of free coefficients: 5
Use "tfdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:

Estimated using TFEST on frequency response data "FRdata".
Fit to estimation data: 94.91%

FPE: 0.004499, MSE: 0.001501

model2 does not capture the dynamics of the original model sys. Thus, sampling related errors are
introduced in the model estimation when the intersample behavior is not correctly specified.
Convert Frequency-Response Data Model to a Transfer Function

This example shows how to convert a frequency-response data (FRD) model to a transfer function
model. You treat the FRD model as estimation data and then estimate the transfer function.

Obtain an FRD model.

For example, use bode to obtain the magnitude and phase response data for the following fifth-order
system:

s+0.2

G(s) =
(5) P+5*+0.853+0.452+0.12s+0.04

Use 100 frequency points between 0.1 rad/s to 10 rad/s to obtain the FRD model. Use frd to create a
frequency-response model object.

freq logspace(-1,1,100);

sysO@ = tf([1 0.2],[1 1 0.8 0.4 0.12 0.04]);
[mag,phase] = bode(sys0,freq);

frdModel = frd(mag.*exp(lj*phase*pi/180),freq);

Obtain the best third-order approximation to the system dynamics by estimating a transfer function
with 3 zeros and 3 poles.
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n
n

p
z

sys =
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tfest(frdModel,np,nz);
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sys is the estimated transfer function.
Compare the response of the FRD Model and the estimated transfer function model.

bode (frdModel, sys,freq(1:50));
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The FRD model is generated from the fifth-order system sys0. While sys, a third-order
approximation, does not capture the entire response of sys@0, it captures the response well until

approximately 0.6 rad/s.

Validating Estimated Model

After estimating a model for your system, you can validate whether it reproduces the system behavior
within acceptable bounds. It is recommended that you use separate data sets for estimating and
validating your model. You can use time-domain or frequency-domain data to validate a model
estimated using frequency-domain data. If you are using input-output validation data to validate the
estimated model, you can compare the simulated model response to the measured validation data
output. If your validation data is frequency-response data, you can compare it to the frequency
response of the model. For example, to compare the output of an estimated model sys to measured

validation data zv, use the following syntax:

compare(zv,sys);
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You can also perform a residual analysis. For more information see, “Validating Models After
Estimation”.

Troubleshooting Frequency-Domain Identification

When you estimate a model using frequency-domain data, the estimation algorithm minimizes a loss
(cost) function. For example, if you estimate a SISO linear model from frequency-response data f, the
estimation algorithm minimizes the following least-squares loss function:

Ny
minimize > |W(wi)(G(wg) ~ flap)?
Glw) k=1

Here W is a frequency-dependent weight that you specify, G is the linear model that is to be estimated,
w is the frequency, and Nris the number of frequencies at which the data is available. The quantity
(G(wg) = f(wy)) is the frequency-response error. For frequency-domain input-output data, the
algorithm minimizes the weighted norm of the output error instead of the frequency-response error.
For more information, see “Loss Function and Model Quality Metrics”. During estimation, spurious or
uncaptured dynamics in your data can effect the loss function and result in unsatisfactory model
estimation.

* Unexpected, spurious dynamics — Typically observed when the high magnitude regions of data
have low signal-to-noise ratio. The fitting error around these portions of data has a large
contribution to the loss function. As a result the estimation algorithm may overfit and assign
unexpected dynamics to noise in these regions. To troubleshoot this issue:

* Improve signal-to-noise ratio — You can gather more than one set of data, and average them. If
you have frequency-domain input-output data, you can combine multiple data sets by using the
merge command. Use this data for estimation to obtain an improved result. Alternatively, you
can filter the dataset, and use it for estimation. For example, use a moving-average filter over
the data to smooth the measured response. Apply the smoothing filter only in regions of data
where you are confident that the unsmoothness is due to noise, and not due to system
dynamics.

* Reduce the impact of certain portions of data on the loss function — You can specify a
frequency-dependent weight. For example, if you are estimating a transfer function model,
specify the weight in the WeightingFilter option of the estimation option set
tfestOptions. Specify a small weight in frequency regions where the spurious dynamics
exist. Alternatively, use fewer data points around this frequency region.

* Uncaptured dynamics — Typically observed when the dynamics you want to capture have a low
magnitude relative to the rest of data. Since a poor fit to low magnitude data contributes less to
the loss function, the algorithm may ignore these dynamics to reduce errors at other frequencies.
To troubleshoot this issue:

* Specify a frequency-dependent weight — Specify a large weight for the frequency region
where you would like to capture dynamics.

* Use more data points around this region.

For an example of these troubleshooting techniques, see “Troubleshoot Frequency-Domain
Identification of Transfer Function Models”.

If you do not achieve a satisfactory model using these troubleshooting techniques, try a different
model structure or estimation algorithm.
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Next Steps After Identifying a Model

After estimating a model, you can perform model transformations, extract model parameters, and
simulate and predict the model response. Some of the tasks you can perform are:

“Transforming Between Discrete-Time and Continuous-Time Representations”

“Transforming Between Linear Model Representations” — Transform between linear parametric
model representations, such as between polynomial, state-space, and zero-pole representations.

“Extracting Numerical Model Data” — For example, extract the poles and zeros of the model using
pole and zero commands, respectively. Compute the model frequency response for a specified
set of frequencies using freqresp.

Simulating and predicting model response
Using the model for control design

See Also

More About

“System Identification Workflow” on page 2-3

“Frequency Domain Identification: Estimating Models Using Frequency Domain Data”
“Effect of Input Intersample Behavior on Continuous-Time Models”

“Troubleshoot Frequency-Domain Identification of Transfer Function Models”
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Introduction
Objectives

Estimate and validate nonlinear models from single-input/single-output (SISO) data to find the one
that best represents your system dynamics.

After completing this tutorial, you will be able to accomplish the following tasks using the System
Identification app:

* Import data objects from the MATLAB workspace into the app.
* Estimate and validate nonlinear models from the data.
* Plot and analyze the behavior of the nonlinearities.

Data Description

This tutorial uses the data file twotankdata.mat, which contains SISO time-domain data for a two-
tank system, shown in the following figure.

Two-Tank System

In the two-tank system, water pours through a pipe into Tank 1, drains into Tank 2, and leaves the
system through a small hole at the bottom of Tank 2. The measured input u(t) to the system is the
voltage applied to the pump that feeds the water into Tank 1 (in volts). The measured output y(t) is
the height of the water in the lower tank (in meters).

Based on Bernoulli's law, which states that water flowing through a small hole at the bottom of a tank
depends nonlinearly on the level of the water in the tank, you expect the relationship between the
input and the output data to be nonlinear.

twotankdata.mat includes 3000 samples with a sample time of 0.2 s.

What Are Nonlinear Black-Box Models?

Types of Nonlinear Black-Box Models

You can estimate nonlinear discrete-time black-box models for both single-output and multiple-output
time-domain data. You can choose from two types of nonlinear, black-box model structures:

* Nonlinear ARX models
* Hammerstein-Wiener models

Note You can estimate Hammerstein-Wiener black-box models from input/output data only. These
models do not support time-series data, where there is no input.
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For more information on estimating nonlinear black-box models, see “Nonlinear Model
Identification”.

What Is a Nonlinear ARX Model?

A nonlinear ARX model consists of model regressors and an output function. The output function
includes linear and nonlinear functions that act on the model regressors to give the model output and
a fixed offset for that output. This block diagram represents the structure of a nonlinear ARX model in
a simulation scenario.

Qutput Function

Regressors MNonlinear
u(t),ult-1),y(t-1), ... Function

Linear
Function

The software computes the nonlinear ARX model output y in two stages:

1

It computes regressor values from the current and past input values and the past output data.

In the simplest case, regressors are delayed inputs and outputs, such as u(t-1) and y(t-3). These
kind of regressors are called linear regressors. You specify linear regressors using the
linearRegressor object. You can also specify linear regressors by using linear ARX model
orders as an input argument. For more information, see “Nonlinear ARX Model Orders and
Delay”. However, this second approach constrains your regressor set to linear regressors with
consecutive delays. To create polynomial regressors, use the polynomialRegressor object. You
can also specify custom regressors, which are nonlinear functions of delayed inputs and outputs.
For example, u(t-1)y(t-3) is a custom regressor that multiplies instances of input and output
together. Specify custom regressors using the customRegressor object.

You can assign any of the regressors as inputs to the linear function block of the output function,
the nonlinear function block, or both.

It maps the regressors to the model output using an output function block. The output function
block can include linear and nonlinear blocks in parallel. For example, consider the following
equation:

Fx)=LT(x-r) +g(Qx-r) +d

Here, x is a vector of the regressors, and r is the mean of x. F(x) = LT(x — 1) + yp is the output of
the linear function block. g(Q(x — r)) + yg represents the output of the nonlinear function block. Q

is a projection matrix that makes the calculations well-conditioned. d is a scalar offset that is
added to the combined outputs of the linear and nonlinear blocks. The exact form of F(x) depends
on your choice of output function. You can select from the available mapping objects, such as
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tree-partition networks, wavelet networks, and multilayer neural networks. You can also exclude
either the linear or the nonlinear function block from the output function.

When estimating a nonlinear ARX model, the software computes the model parameter values,
such as L, r, d, Q, and other parameters specifying g.

The resulting nonlinear ARX models are idnlarx objects that store all model data, including model
regressors and parameters of the output function. For more information about these objects, see
“Nonlinear Model Structures”.

What Is a Hammerstein-Wiener Model?

This block diagram represents the structure of a Hammerstein-Wiener model:

Where,
* fis a nonlinear function that transforms input data u(t) as w(t) = flu(t)).

w(t), an internal variable, is the output of the Input Nonlinearity block and has the same
dimension as u(t).

* B/Fis a linear transfer function that transforms w(t) as x(t) = (B/F)w(t).
x(t), an internal variable, is the output of the Linear block and has the same dimension as y(t).

B and F are similar to polynomials in a linear Output-Error model. For more information about
Output-Error models, see “What Are Polynomial Models?”.

For ny outputs and nu inputs, the linear block is a transfer function matrix containing entries:

Bj,i(q)
Fji(q)

wherej=1,2,...,nyandi=1,2,...,nu.

* his anonlinear function that maps the output of the linear block x(t) to the system output y(t) as
y(t) = h(x(t)).

Because f acts on the input port of the linear block, this function is called the input nonlinearity.
Similarly, because h acts on the output port of the linear block, this function is called the output
nonlinearity. If your system contains several inputs and outputs, you must define the functions fand h
for each input and output signal. You do not have to include both the input and the output
nonlinearity in the model structure. When a model contains only the input nonlinearity f, it is called a
Hammerstein model. Similarly, when the model contains only the output nonlinearity h, it is called a
Wiener model.

The software computes the Hammerstein-Wiener model output y in three stages:
1 Compute w(t) = flu(t)) from the input data.
w(t) is an input to the linear transfer function B/F.

The input nonlinearity is a static (memoryless) function, where the value of the output a given
time t depends only on the input value at time t.
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You can configure the input nonlinearity as a sigmoid network, wavelet network, saturation, dead
zone, piecewise linear function, one-dimensional polynomial, or a custom network. You can also
remove the input nonlinearity.

2  Compute the output of the linear block using w(t) and initial conditions: x(t) = (B/F)w(t).

You can configure the linear block by specifying the orders of numerator B and denominator F.

3 Compute the model output by transforming the output of the linear block x(t) using the nonlinear
function h as y(t) = h(x(t)).

Similar to the input nonlinearity, the output nonlinearity is a static function. You can configure
the output nonlinearity in the same way as the input nonlinearity. You can also remove the output
nonlinearity, such that y(t) = x(t).

Resulting models are idnlhw objects that store all model data, including model parameters and
nonlinearity estimators. For more information about these objects, see “Nonlinear Model Structures”.

Prepare Data
Load Data into the MATLAB Workspace

Load sample data in twotankdata.mat by typing the following command in the MATLAB Command
Window:

load twotankdata
This command loads the following two variables into the MATLAB Workspace browser:

* u is the input data, which is the voltage applied to the pump that feeds the water into Tank 1 (in
volts).

* yisthe output data, which is the water height in Tank 2 (in meters).
Creating iddata Objects

System Identification Toolbox data objects encapsulate both data values and data properties into a
single entity. You can use the System Identification Toolbox commands to conveniently manipulate
these data objects as single entities.

You must have already loaded the sample data into the MATLAB workspace, as described in “Load
Data into the MATLAB Workspace” on page 4-5.

Use the following commands to create two iddata data objects, ze and zv, where ze contains data
for model estimation and zv contains data for model validation. Ts is the sample time.

Ts = 0.2; % Sample time is 0.2 sec

z = iddata(y,u,Ts);

% First 1000 samples used for estimation
ze = z(1:1000);

% Remaining samples used for validation
zv = z(1001:3000);

To view the properties of the iddata object, use the get command. For example:
get(ze)

MATLAB software returns the following data properties and values:
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Domain: 'Time'
Name: "'
OQutputData: [1000x1 double]
y: 'Same as OutputData'
OQutputName: {'yl'}
OutputUnit: {''}
InputData: [1000x1 double]
u: 'Same as InputData’
InputName: {'ul'}
InputUnit: {''}
Period: Inf
InterSample: 'zoh'
Ts: 0.2000
Tstart: 0.2000
SamplingInstants: [1000x0 double]
TimeUnit: 'seconds'
ExperimentName: 'Expl'
Notes: {}

UserData: []

To modify data properties, use dot notation. For example, to assign channel names and units that
label plot axes, type the following syntax in the MATLAB Command Window:

% Set time units to minutes

ze.TimeUnit = 'sec';
% Set names of input channels
ze.InputName = 'Voltage';

% Set units for input variables
ze.InputUnit = 'V';

% Set name of output channel
ze.OutputName = 'Height';

% Set unit of output channel
ze.OutputUnit = 'm';

% Set validation data properties
zv.TimeUnit = 'sec';

zv.InputName = 'Voltage';
zv.InputUnit = 'V';
zv.OutputName = 'Height';
zv.OutputUnit = 'm';

To verify that the InputName property of ze is changed, type the following command:

ze.inputname

Tip Property names, such as InputName, are not case sensitive. You can also abbreviate property
names that start with Input or Output by substituting u for Input and y for Output in the property
name. For example, OutputUnit is equivalent to yunit.

Start the System Identification App

To open the System Identification app, type the following command in the MATLAB Command
Window:

systemIdentification
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The default session name, Untitled, appears in the title bar.

‘Validation Data

Status line is here.

System Identification - Untitled EI@
File Options Window Help
Import data - Import models -
‘ Operations. JL
<— Preprocess -
=
Working Data
Estimate —= -
Data Views To To Model Views
Time plot Workspace || LTI Viewer Model output Transient resp Monlinear ARX
Data spectra _ Model resids Freguency resp Hamm-Wiener
Frequency function ”” Zeros and poles
Trash Noise spectrum

Import Data Objects into the System Identification App

You can import the data objects into the app from the MATLAB workspace.

You must have already created the data objects, as described in “Creating iddata Objects” on page 4-

5, and opened the app, as described in “Start the System Identification App” on page 4-6.

To import data objects:

1

In the System Identification app, select Import data > Data object.

ilmpu:urt data

B

Impart data

Titme dotmain data...
Freq. domain data...

Exarnple. ..

This action opens the Import Data dialog box.
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ol x]

Data Format for Signals

[1DDATA or IDFRDIFRD =

Workspace Variable

Ohbject: I

Object class:

Data Information

Data ratme: ||W|jata
Starting time: |1
Sampling interval: |1

More I
Import | Reset |
Close | Help |

Enter ze in the Object field to import the estimation data. Press Enter.
This action enters the object information into the Import Data fields.

Click More to view additional information about this data, including channel names and units.
Click Import to add the icon named ze to the System Identification app.

In the Import Data dialog box, type zv in the Object field to import the validation data. Press
Enter.

Click Import to add the icon named zv to the System Identification app.
In the Import Data dialog box, click Close.

In the System Identification app, drag the validation data zv icon to the Validation Data
rectangle. The estimation data ze icon is already designated in the Working Data rectangle.

Alternatively, right-click the zv icon to open the Data/model Info dialog box. Select the Use as
Validation Data check-box. Click Apply and then Close to add zv to the Validation Data
rectangle.

The System Identification app now resembles the following figure.
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Import data ~)
“ Operations
<— Preprocess -
za v 1 ’
=
ze
Working Data
Estimate —= ~)
Data Views To To
l:‘ Time plot Workspace LTI Viewar Mod
D Data spectra

Estimate Nonlinear ARX Models
Estimate Nonlinear ARX Model with Default Settings

In this portion of the tutorial, you estimate a nonlinear ARX model using default model structure and
estimation options.

You must have already prepared the data, as described in “Prepare Data” on page 4-5. For more
information about nonlinear ARX models, see “What Is a Nonlinear ARX Model?” on page 4-3.

Note The illustrations in this tutorial represent a typical System Identification app session. Your
results may not precisely match the results in the images.

1 In the System Identification app, select Estimate > Nonlinear models.

Estimate — e

Eztimate —=

Transfer Function Models...
State Space Models. .
Process Models...
Pohsnomial Models...

Nonlinear ARX Models...
Hammerstein-Wiener Models...
Spectral Models...

Correlation Models...

Dafina Fwictinn Hadale

This action opens the Estimate Nonlinear ARX Models dialog box.
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4 Estimate Nonlinear ARX Models — O -
Model Structure | Estimation Options |
Model name | nlarx1 |
Initial model | Default v |
Fegressors | Dutput Function |
Estimation Data Regressors
Input: uff) | uit-1), uit-2), yit-1},... N ) Output
Output: yit ¥ Iylt-11, ult-2)yit-1),... # Output Function f————F
exp(-0.1-|uft-1)[}
Add regressors of type: | Select L4 |
Regressor Sets Configure: Linear regressors #1
Linear regressors #1 Crder 1 = nclude mix of variables
Variables Lags Use absolute value
Height [12] ]
Voltage [12] ]
[ Delete Regressor Set ]

= Assign Regressors to Output Function

Height:LinearFcn
Heightit-1)
Heightit-2)
Voltage(t-1)
Voltage(t-2)

Height:NonlinearFcn

RYJIRVENHEN
RYJRYENHEY

[ Estimate] [ Clnse]
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The dialog box contains two tabs — Model Structure and Estimation Options.

The Model Structure tab contains parameters that configure the structure of the model, such as
the choice of the regressors and the type of the output function. Specify the name of the model to
be estimated in Model name. The default model name is nlarx1.

Use the Regressors tab to create the regressor sets to use. By default, the app creates a linear
regressor set with lags [1 2] in each variable and stores the regressor as Linear regressors
#1 in the Regressor Sets area. This panel contains a table that allows you to modify the lags to
use for each variable.

Regressor Sets

Linear regressors #1

Delete Regressor Set

The configuration panel Configure: Linear regressors #1 contains a table that shows the lag
values that the regressor set uses. You can modify these lags.

Configure: Linear regressors #1 \'}"—..\‘

3

Variables Lags Use absolute value
Height 12
Voltage [12]

The regressor assignment table Assign Regressors to Output Function lists the regressor
names and the regressor assignments to the output function components.
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Height(t-1)
Heilght(t-2)

v

= Assign Regressors to Output Function )
I Height:Lineachn Height:MonlinearFcn )

Voltage(t-1)
Voltage(t-2)

JRIRR
JRIR

The regressor assignments in the table produce a model for the output Height of:
Height(t) = f(Height(t-1), Height(t-2),Voltage(t-1),Voltage(t-2))

Here, f(.) is a static nonlinear function that maps the regressors to the output. To choose f{.) and
its associated parameters, use the Qutput Function tab.

You can add more regressor sets, such as polynomials and custom formulas, by selecting a
regressor type in Add regressors of type.

Add regressors of type: | Select L
Regressor Sets Select
- Folynomial
Linear regressors #1
Linear
Custom

- S

This example uses only Linear regressors #1.
2 Select the Output Function tab.

The tab shows that the app selects Wavelet Network as the default type of the output function
f(.). This function uses a sum of a linear function, a nonlinear function (which is a sum of scaled
wavelets), and an offset term to compute the output. The tab also shows a set of configuration
parameters. The number of wavelets used by the function is configured to be chosen
automatically during estimation. You can modify this selection. You can also modify the initial
values of the linear coefficients and the offset. For the first estimate, keep the default choices.
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Fegressors Cutput Function
Qutput Function
Estimation Data |'DP1‘S&1 r
U:::::: :%’ * Regressors * I Manlinear Function o wﬁ-
Linear Function o'
Output{s) UUse Linear Function Monlinear Function Use Offset
Height wavelet Netwaork
Cwtput function configuration for output: Height
Mumber of Units Fix)

(®) Select automatically
() Enter

() Select interactively during estimation

St e

———

(4L

Linear function value | Default |

Oiffset value | Default |

LAV AV RV SV SV SV S S S N N

3 Click Estimate.

This action adds the model nlarx1 to the model board of the System Identification app, as

shown in the following figure.

F 3

| M: Mumber of Units
1 2...N

F 1
k J
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Systern ldentification - Untitled

4-14

File Options Window Help

Import data W Import models w

‘.' Operations "'
f N < Preprocess ‘r
v niarx
T

)

Weorking Data

b

Estimate —» v

Data Views To To Model Views
;| Time plot )WGFH?J LT| Viewer } Model output [] Transient resp [ ] Monlinear ARX
"-a/ -2 / / '|-|:I/ / -1 E/ "\r/ / f/
4  Double click or right-click the model icon nlarx1 The model board shows information about the
estimated model. The top area describes the model structure and estimation results (data used,

percent fit and other quality metrics). The bottom area (Diary and Notes) shows the MATLAB
script that you can use to reproduce the estimation results at the command line.
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Data‘model Info: nlanc]

Maodel name: nlan

Caolar: [DIDI-”

Output function: Wawvelet Network with 7 units -
Hame: nlarxl
Sample time: 0.2 seconds
Status:
Estimated using NLARY on time domain data "=ze".
Fit to estimation data: 96.62% (prediction focus)
FPE: 3.743e-05, MSE: 3.647e-05 hd
Diary and Motes
-~
% Create Output Function
HNL = wawvenet;
% Create a template IDNLARX model
initialModel = idnlarx{ze.0utputName, ze.InputMName, Regressors, NL):»
Options = nlarxOptions;
% Estimate a Nonlinear ARX Model
nlarxl = nlarx({ze, initialModel, Options);
W

Show in LTI Viewer

Present Export Close Help

Note Fit (%) is computed using the estimation data set with prediction focus. and not the

validation data set. However, the model output plot in the next step compares the fit to the

validation data set. To see how well the model can simulate the response of an independent
validation dataset, use the Model Output plot, as discussed in the following step.

In the Model Views area of the System Identification app, select Model output. This action
simulates the model using the input validation data as the input to the model and plots the
simulated output on top of the output validation data.
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Model Output: Height

File Options Style  Channel Experiment Help

04 Measured and simulated model output

Best Fits
nlars1: 60.91

-0.4 : . :
200 300 400 500 &00
Time

The Best Fits area of the model output plot shows the agreement between the model output and
the validation-data output using a normalized root mean squared (NRMSE) metric of goodness of
fit. The agreement is poor in the 400-500 time span.

Plot Nonlinearity Cross-Sections for Nonlinear ARX Models

Perform the following procedure to view the shape of the nonlinearity as a function of regressors on a
Nonlinear ARX Model plot.

1 In the System Identification app, select the Nonlinear ARX check box to view the nonlinearity
cross-sections.

By default, the plot shows the relationship between the output regressors Height(t-1) and
Height (t-2). This plot shows a regular plane in the following figure. Thus, the relationship
between the regressors and the output is approximately a linear plane.
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Monlinear ARX Model Plot

File Options Style  Help

Select nonlinearity at output: Height b >
Qutput: Height

Output: Height

Py Regressor 1:
Heightit-1} -
0.6 Range: |[-0.045 0.634]
Regressor 2:
> 0.4 4 Heightit-2} e
=
3 > Range: |[-0.045 0.634]
[= o f
=
2 Remaining regressors:
04
| Fix values... |
0.2 .

=
o

Apply

Regressor 2 . 0

Regressor 1

In the Nonlinear ARX Model Plot window, set Regressor 1 to Voltage(t-1). Set Regressor 2
to Voltage(t-2). Click Apply.

The relationship between these regressors and the output is nonlinear, as shown in the following
plot.
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Monlinear ARX Model Plot

File Options Style  Help

Select nonlinearity at output: Height v >
Qutput: Height
Output: Height
Regreszor 1:
".:‘ ||:nlarx1 wavenet “oltage(t-1) w
i“f"‘%
0.305 - “ﬁé:g‘::’% Range: [12  10.8]
et te
0.3 - ‘:’\*‘:‘L‘::‘::ﬁ Regressor 2;
| ST e%e
S e Voltage(t-2) w
0.295 4
Range: |12 10.8]
0.29 4
Remaining regressors:
0.285
Fix walues. ..
0.28 J
10
Apply
Regressor 2 0 o Regressor 1

3 To rotate the nonlinearity surface, select Style > Rotate 3D and drag the plot to a new
orientation.

4 To display a 1-D cross-section for Regressor 1, set Regressor 2 to none, and click Apply. The

following figure shows the resulting nonlinearity magnitude for Regressor 1, which represents
the time-shifted voltage signal, Voltage(t-1).

4-18



Identify Nonlinear Black-Box Models Using System Identification App

Monlinear ARX Model Plot

File Options  Style  Help
Select nonlinearity at output: Height e e
Output: Height
Output: Height Regressor 1:
0.296 T T T T T T T T T
Woltage(i-1) w
| nlarx1 wavenet
Range: [12 10.8]
0.295 b Regressor 2:
<none= ~
Range: [1.2 10.8]
0.294 - -
Remaining regressors:
=
o Fix values...
O
c 0293 r 4
=
(=]
= Apply
0.292 r A
0.291 -
D 29 | i i i i i | i i
1 2 e 4 5 6 i 8 9 10 11
Regressor 1

Change Nonlinear ARX Model Structure

In this portion of the tutorial, you estimate a nonlinear ARX model with specific input delay and
nonlinearity settings. Typically, you select model orders by trial and error until you get a model that
produces an accurate fit to the data.

You must have already estimated the nonlinear ARX model with default settings, as described in
“Estimate Nonlinear ARX Model with Default Settings” on page 4-9.

1 In the Estimate Nonlinear ARX Models dialog box, select the Model Structure tab, and then
select the Regressors tab.

2 In the Configure: Linear regressors #1 panel, change the Voltage variable lags to [3 4].
This is because the data suggests that there is a minimum of 3 sample lags between the input
and the output.

This action updates the regressors list to show Voltage(t-3) and Voltage(t-4)—terms with
a minimum delay of three samples.
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Add regressors o type: | Select L 4 |

Regressor Sets Conhgure: Linear regressors #1

Linear regressors #1 Order

1}
I
[}

Variables Lags Use absolute value
Height na ]

Votage O

| Delete Regressor Set |

+* Assign Regressors to Qutput Function

Height:LinearFcn Height:NonlinearFcn
Height{t-1)
Height{t-2)
Voltage(t-3)
Voltage(t-4)

RNJIENHIENEEN
KNJIENHENEEN

S L S L A A B B A .

3 Click Estimate.
This action adds the model nlarx2 to the System Identification app and updates the Model

Output window to include this model. Double-clicking on the nlarx2 icon in the model board of
the main app window shows the estimation results.
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Data‘model Info: nlanc2

Model name: nlan
Calar: [0,0.5.0]
Nonlinear ABRX model with 1 ocutput and 1 input L]

Inputs: Voltage
Qutputs: Height

Begressors:
Linear regressors in variables Height, Voltage

Cutput function: Wavelet Network with 5 units

"
Diary and Motes

= = r r —r "
% Create Output Function
HL = wavenst;
% Create a template IDNLARX model
initialModel = idnlarx{ze.lutputMame, =ze.InputNams, Begressocrs, HL):
Options = nlarxOptions;
% Estimate a Nonlinear ARY Model
nlarx2 = nlarx{ze, initialMode=l, Options);

"

Show in LTI Viewer

Present Export Close Help

The app also updates the model output plot to display the fit of the model nlarx2 to the
validation dataset zv. The plot shows that the choice of correct input variable lags improves the
fit.
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Model Output: Height

File Options Style  Channel Experiment Help

04 Measured and simulated model output

Best Fits
nlarx?: B5.36
rlars1: 60.91

-0.4 : . :
200 300 400 500 &00
Time

4 Inthe Estimate Nonlinear ARX Models dialog box, select the Model Structure tab, and then
select the Regressors tab.

5 Select the Output Function tab.

For the Number of Units, select Enter and enter 6. Setting a specific number controls the
flexibility of the nonlinear function by directly specifying the number of wavelets that Wavelet
Network uses.
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Output Function
Estimation Data |UffS&1 &
D:::::: :[[:3 * Regressors 4 I Monlinear Function o wﬁ-
Linear Function o'
Cutput{s) Use Linear Function Nonlinear Function Use Offset
Height Wavelet Network
Cutput function configuration for output: Height
MNumber of Units Fix)

() Select automatically

(») Enter D

() Select interactively during estimation

L.

Linear function value | Default |

Offset value | Default |

Click Estimate.

M: Mumber af Lnits

1 2...N

v

F 9

This action adds the model nlarx3 to the System Identification app. It also updates the Model
Output window, as shown in the following figure.
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Measured and simulated model output

0.6

Best Fits
nlarx3: B6.28
nlarx2: 55.36

nlarx1: 60.91

-0.4 . . .
200 300 400 500 &00
Time

Use Polynomial Regressors

You can estimate a nonlinear ARX model that use higher powers of lagged variables as regressors. In
this example, you will add second-order polynomials of the lagged variables, including cross terms.

1 In the Estimate Nonlinear ARX Models dialog, select the Model Structure tab and then
select the Regressors tab.

2  Expand Add regressors of type and select Polynomial.
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- Aty .
| 0. avwlh A’| L AR git-1),.. | _'|_ ¢ ' | o
[|

exp(-0.1uit-1}[)

Add regressors of type: | Select v

Regressor Sets Select Conhgure: Linear regressors #1
: Palynomial B =
Linear regressors #1 Order 1 e ariable
Linear
Custom nclude mix of lags
Variables Lags Use absolute value
Height 13 ]
Voltage [34] ]

| Delete Regressor Set |

= Assign Regressors to Output Function

O L Lo LA i o L

This action adds a polynomial regressor set called Polynomial regressors #1 to the list of

regressor sets. By default, this set is configured to generate regressors of order 2, as shown in
the configuration panel.

Regressor Sets Conhgure: Polynomial regressors #1
Linear regressors #1 Crder |:| Include mix of variables

Polynomial regressors #1 |

|| Include mix of lags

Variables Lags Use absolute value
Height [12] ]
Voltage [na ]

| Delete Regressor Set |

Change the Voltage lags to [3 4].

Select Include mix of variables to include all cross terms. This action adds ten second-order
regressors to the model, in addition to the four contributed by Linear regressor #1.

Click Estimate. This action adds the model nlarx4 to the app. The app updates the Model
Output plot, as shown in the following figure.
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The plot shows that the addition of polynomial regressors has not improved the generalization
ability of the model. That is, the model does not provide a better fit between the model output
and the measured output for independent validation data. This result is typically the scenario
with overfits, that is, when the model contains more regressors than absolutely required.

Select Subset of Regressors in Nonlinear Block

You can estimate a nonlinear ARX model that includes only a subset of regressors that enter as inputs
to the nonlinear block. By default, all regressors are used in the nonlinear block. In this portion of the
tutorial, you assign only a subset of the regressors to the nonlinear block.

You must have already specified the model structure, as described in “Change Nonlinear ARX Model
Structure” on page 4-19.

1 In the Estimate Nonlinear ARX Models dialog box, select the Model Structure tab, and then
select the Regressors tab.
If collapsed, expand the Assign Regressors to Output Function panel.

Clear the selections for all the second order regressors from the Height:NonlinearFcn column
of the table. Also, clear the selections for all the regressors with cross terms (that is, regressors
composed of products of 2 terms) from Height:LinearFcn
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= Assign Regressors to Dutpu-t Fun{.:tmn { - . ~
Height:LinearFcn Height:NonlinearFcn
Height{t-1)
Height{t-2)
Voltage(t-3)
Voltage(t-4)
Height{t-1)»2 ]
Height{t-2)*2 ]
Voltage(t-3)2 ]
Moliomals 4189 =1 —

A

s

4 Click Estimate.

This action adds the model nlarx5 to the System Identification app. It also updates the Model
Output window.

Model Qutput: Height

File Options  Style  Channel Experiment Help

08 Measured and simulated model output

Best Fits
nlarx5: 87 .65
nlarx3: 8628
nlarx?: B5.36
nlarx1: 60.91

nlarxd: 5015

-0.4 : : :
200 300 400 500 G600
Time

This model shows improved generalization ability.
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Specify Previously Estimated Model with Different Output Function Nonlinearity

You can estimate a series of nonlinear ARX models by making systematic variations to the model
structure and base each new model on the configuration of a previously estimated model. In this
portion of the tutorial, you estimate a nonlinear ARX model that is similar to an existing model
(nlarx3), but which has a different nonlinearity in the output function.

1 In the Estimate Nonlinear ARX Models dialog box, select the Model Structure tab.

2 Select nlarx3 from Initial Model. This sets the properties that are displayed in the Regressors
and Output Function tabs to the values corresponding to nlarx3.

) Estimate Monlinear ARX Models

Maodel Structure Estimation Options

Maodel name | nlarx6 |

Initial model | nlarx3 v |

Default
Fegressors nlars5s iction
nlar1
nlar:2 ‘ata Regressors
[ nlar:3 ; }—b '":tt IIIJ'EUE.T-Z]E']}I:; 11]]' ¥ Output Function —._Output

niarx4 e;;pi o1 LII':[ :'1]|}'

Add regressors of type: | Select v |

Regressor Sets Conhgure: Linear regressors #1

| Linear regressors #1 |
3 Select the Output Function tab.

4 In the table, change the choice of Nonlinear Function to Sigmoid Network. This sets the
output function to a sigmoid network.
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Output Funclion

Estimation Data |lefs&1 )
a::::m ?:It:' ¥ Regressors 4 I Monlinear Function o wﬁ
Linear Function o'
Cutput{s) Use Linear Function MNonlinear Function Use Offset
Height | Sigmoid Netwark - |

Wavelet Network
Tree Partition
Sigmoid Netwoark
Meural Network

Cutput function configuration for output: Height

Enter the number of units | 10 | Custom MNetwork

St nonlinear function Mone i
Linear function value |Default | F Sigrnoid
Offset value | Default | F X

F 3
v

In Enter the number of units, enter 6.
Click Estimate.

This action adds the model nlarx6 to the System Identification app. It also updates the Model
Output plot, as shown in the following figure.
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Model Output: Height

File Options Style  Channel Experiment Help

04 Measured and simulated model output

Best Fits
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rlar<d: 50.15
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Select the Best Model

The best model is the simplest model that accurately describes the dynamics. The results indicate
that model nlarx3 is a candidate for being the best idnlarx model for this data, based on the various
model structure choices that this example explored.

Export Best Model to Base Workspace

Drag the nlarx3 icon to the To Workspace box in the main System Identification app window.
Alternatively, double click the nlarx3 icon to open its information board. From there, click Export to
export the model to the base workspace.
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Data‘/model Info: nlam3

Model name: nlanc
Color: [1,0,0]
Nonlinear ARX model with 1 output and 1 input "~
Inputs: Voltage
Jutputs: Height
Begressors:
Linear regressors in variables Height, Voltage
W
Diary and Motes
~
% Details about Estimation
Data
% Import
ze
W

Show in LTI Viewer

i b

Present Export Close Help

Estimate Hammerstein-Wiener Models
Estimate Hammerstein-Wiener Models with Default Settings

In this portion of the tutorial, you estimate nonlinear Hammerstein-Wiener models using default
model structure and estimation options.

You must have already prepared the data, as described in “Prepare Data” on page 4-5. For more
information about nonlinear ARX models, see “What Is a Hammerstein-Wiener Model?” on page 4-4

Note The illustrations in this tutorial represent a typical System Identification app session. Your
results may not precisely match the results in the images.

1 In the System Identification app, select Estimate > Hammerstein-Wiener Models to open
the Estimate Hammerstein-Wiener Models dialog box. The dialog box contains two tabs —
Model Structure and Estimation Options.

4-31



4 Nonlinear Model Identification

2  Inspect the default model structure. The Model Structure tab contains three tabs, one tab for
each component of the model. These components are the input nonlinearity, the linear dynamic
block, and the output nonlinearity.

a  Select the Input Nonlinearity tab. The default nonlinearity is a Piecewise Linear function
with 10 breakpoints.

Input Monlinearity Linear Block Cutput Nonlinearity

u X aar Black
Ir_|put ) inear I I. -
Input Monlinearity (dynamic)
Input Nonlinearity
Yoltage Fiecewize Linear

Properties for "Piecewise Linear" nonlinearity for input "Voltage”

Mumber of breakpoints | 10 Fix) Honknianties

Breakpoint locations Default

b Select the Linear Block tab. The linear transfer function has a numerator order of 2, which
implies a second-order polynomial in 2!, a denominator order of 3, and an input delay of 1
sample.

Input Monlinearity Linear Block Cwtput Monlinearity

Input s by + bzt +.. + b2t & hutp
o - — e : =
Input Jonlineari l+a,z'+...+a2" Mo y | Output
Input Mumerator Order Denominator Order Delay
Yoltage 2 3 1

Infer Input Delay...
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3

¢ Select the Output Nonlinearity tab. As with the Input Nonlinearity tab, the default
nonlinearity is a Piecewise Linear function with 10 breakpoints.
Input Monlinearity Linear Block Cwtput Monlinearity
= Output ¥
" Monlinearity Output g
Cutput Monlinearity
Height Fiecawise Linear
Properties for "Piecewise Linear” nonlinearity for output “"Height”
Mumber of breakpoints | 10 Fx) Monlnoantios
Breakpoint locations Default
‘roakpoints £
Click Estimate.

This action estimates the parameters of the Hammerstein-Wiener model to minimize the
difference between the model output and the measured output (ze.OutputData). The estimated
parameters are:

The breakpoint locations (x- and y-coordinates) of the input and output piecewise-linear

functions.

The numerator and the denominator polynomial coefficients that compose the linear block

transfer function.

The software adds the estimated model nlhwl to the model board of the System Identification

app.

Import data A Import modelz A

; Operations = ;

/- r ! <— Preprocess /
e ] b1

T
».—-'f/—'_

D | =

Working Data
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4 In the System Identification app, select the Model output check box.

This action simulates the model using the input validation data as input to the model and plots
the simulated output on top of the output validation data. Note that the validation data is set to

Z\V.
%mﬁMtwuk
ze
Working Data
mate —= -
Model Views
To To
fhspace || LTI Viewer Model output [ ] Transient resp

e —
[ ] Model rezids [] Freguency rezp

M M"\H‘ [] Zeros and poles

Y

“alidation Data
R, i F.

Trash [ ] Moize =pectrum

ol

The Best Fits area of the Model Output window shows the agreement between the model output
and the validation-data output.

Model Output: Height

File Options Style  Channel Experiment Help

Measured and simulated model output

0.7
Best Fits

nilhw1: 28.03

-0.1 : . :
200 300 400 500 &O0
Time

The model nlhwl does not validate well. The fit to zv.QutputData is poor.
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Plot Nonlinearities and Linear Transfer Function

You can plot the input/output nonlinearities and the linear transfer function of the model on a
Hammerstein-Wiener plot.

1

2

In the System Identification app, select Hamm-Wiener to view the Hammerstein-Wiener
model plot.

The plot displays the input nonlinearity, as shown in the following figure.

Hammerstein-Wiener Model Plot

File

Options  Style  Help

MNonlinearity Value

Click on a block to view its plot:

Select nonlinearity at channel: “Voltage i

nlbw 1 pwlinear

1 2 3 4 ] G 7 8

Input to nonlinearity at input "WVoltage”

11

g

Click the yyr rectangle in the top portion of the Hammerstein-Wiener Model Plot window.

The plot updates to display the output nonlinearity.

4-35



4 Nonlinear Model Identification

Hammerstein-Wiener Model Plot

File Options Style  Help

Click on a block to view its plot: =

Select nanlingarity at channel  |Height e

0.7 T T T T T
nlhwe1: pwlinear

0.6 1

04r b

03r 7

Monlinearity Value

0171 -

—D_1 i i i i i
-1500 -1000 -500 0 500 1000 1500

Input to nenlinearity at output "Height"

3  Click the Linear Block rectangle in the top portion of the Hammerstein-Wiener Model Plot
window.

The plot updates to display the step response of the linear transfer function.
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4

Hammerstein-Wiener Model Plot

Amplitude

File Options Style  Help
Click on a block to view its plot: =
Uni LY _"
Select VO pair: Yoltage-=Height o Choose plot type: | Step o
42 104 From Voltage to Height
T T T T T T T T T

0.2

0.4

0.6

0.8 1 1.2
Time (seconds)

1.4

1.6

1.8

2
x 104

In the Choose plot type list, select Bode. This action displays a Bode plot of the linear transfer

function.
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Hammerstein-Wiener Model Plot

File Options Style  Help

Click on a block to view its plot: =

IJh.IL FNL :

Select VO pair: Yoltage-=Height o Choose plot type: | Bode o

From Voltage to Height

'1':}5 T T T AL M T LA | T T
=]
Ei
2
B
=T
0% 1
'D T T T T T

Fhase (degrees)
=
T
1

-2‘:}{:‘ 1 Ll 1 Ll 1 AR | 1 AR | 1 L 1 aaanl AT
107 103 107 107" 10 10" 10°
Frequency (rad/seconds)

Change Hammerstein-Wiener Model Input Delay

In this portion of the tutorial, you estimate a Hammerstein-Wiener model with a specific model order
and nonlinearity settings. Typically, you select model orders and delays by trial and error until you
get a model that produces a satisfactory fit to the data.

You must have already estimated the Hammerstein-Wiener model with default settings, as described
in “Estimate Hammerstein-Wiener Models with Default Settings” on page 4-31.

1 Inthe Estimate Hammerstein-Wiener dialog box, select the Model Structure tab and then
the Linear Block tab.

2  Forthe Voltage input channel, double-click the corresponding Input Delay (nk) cell and enter
the value 3.

3 Click Estimate.
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This action adds the model nlhw2 to the System Identification app and updates the Model
Output plot, as shown in the following figure.

Model Output: Height

File Options  5Style  Channel Experiment  Help

Measured and simulated model output

0.7
Best Fits

rilbw2: G019
nihwe1: 28.03

200 300 400 500 600
Time

The Best Fits panel of the Model Output window shows the quality of the nlhw2 fit, which is an
improvement over that of the model nlhwl.

Change Nonlinearity Estimator in Hammerstein-Wiener Model

In this portion of the example, you modify the default Hammerstein-Wiener model structure by
changing its nonlinearity estimator.

Tip If you know that your system includes saturation or dead-zone nonlinearities, you can specify
these specialized nonlinearity estimators in your model. Piecewise Linear, Wavelet Network,
and Sigmoid Network are nonlinearity estimators for general nonlinearity approximation.

1 Inthe Estimate Hammerstein-Wiener Models dialog box, select the Model Structure tab
and then the Input Nonlinearity tab.

2 (Click the Nonlinearity cell for the Voltage variable and select Sigmoid Network from the
list.
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Input Monlinearity Linear BElock Cwtput Monlinearity

u X Faar Bl W
Ir.|put ) .|. 2a t?l...:.“ { .
Input Monlinearity (dymamic)
Input Monlinearity
Voltage ISigmuid Metwork - I

Fiecewise Linear

Sigmoid Metwork

Properties for "Sigmoid Metwork” non

2

Saturation
Deadzone
Wavelet Network
Enter the number of units | 10 One-dimensional Polynomial

Custom Metwork

Mone

3 In Enter the number of units, set the value to 20.

S,
Input Nonlinearity
Voltage Sigmoid Network
Properties for "Sigmoid Network” nonlinearity for input "Voltage"
L

F(x}

Enter the number of units |2.|] |

Sigrmaid

4 Click Estimate.

This action adds the model nlhw3 to the System Identification app. It also updates the Model
Output window, as shown in the following figure.
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Model Output: Height k
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5 Inthe Estimate Hammerstein-Wiener Models dialog box, select the Input Nonlinearity tab.

6 For the Voltage input, set Nonlinearity to Wavelet Network. The default value for Number
of Units is Select Automatically.
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Input Maonlinearity Linear Elock Cwutput Nonlinearity

u Input Linear Block

e ——— ) . » h
Input Maonlinearity {dynamic)

<
J
;m
p

Properties for "Wavelet Network™ nonlinearity for input "Voltage"

Number of Units Fix)

F 3

(@) Select automatically AT

() Enter 10 1 2..N
g

() Select interactively during estimation

Select the Output Nonlinearity tab.

Set the Height output Nonlinearity to One-dimensional Polynomial. Set Degree of
polynomial to 2.
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| Input Maonlinearity Linear Elock Cwutput Nonlinearity

I} Linear Block w Output ¥
{dynamic) "I Monlinearity Output

Cutput Nonlinearity

Heaght One-dimensional Polmomial

Properties for "One-dimensional Polvnomial” nonlinearity for output “"Height”

'y

Degree of polynomial | 2 | Fix)

Eow

Coefiicients | Default |

Click Estimate.

This action adds the model nlhw4 to the System Identification app. It also updates the Model
Output window, as shown in the following figure.
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Model Output: Height
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Select the Best Model
The best model is the simplest model that accurately describes the dynamics.

In this example, the models nlhw3 and nlhw4 are good candidates.
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